18.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則z=x+2y的最大值與最小值的差為( 。
A.3B.4C.7D.10

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)求出最小值和最大值,作差得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x=1}\\{x-y=0}\end{array}\right.$,解得A(1,1);
聯(lián)立$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$,解得B(1,3).
作出直線x+2y=0,由圖可知,當(dāng)直線x+2y=0分別平移至A和B時,目標(biāo)函數(shù)z=x+2y取得最小值和最大值.
最小值為3,最大值為7.
∴z=x+2y的最大值與最小值的差為7-3=4.
故選:B.

點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$過點(diǎn)(0,-2),F(xiàn)1,F(xiàn)2分別是其左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P是橢圓上一點(diǎn),PF1⊥x軸,且△OPF1的面積為$\sqrt{2}$,
(1)求橢圓E的離心率和方程;
(2)設(shè)A,B是橢圓上兩動點(diǎn),若直線AB的斜率為$-\frac{1}{4}$,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知$|{\overrightarrow{TM}}|=2$,$|{\overrightarrow{TN}}|=4$,且$\overrightarrow{TM}•\overrightarrow{TN}=\frac{5}{2}$,若點(diǎn)P滿足$|{\overrightarrow{TM}+\overrightarrow{TN}-\overrightarrow{TP}}|=2$,則$|{\overrightarrow{TP}}|$的取值范圍為[3,7].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合M={x|x2-2x-3<0},N={x∈N||x|≤3},P=M∩N,則P中所有元素的和為(  )
A.6B.5C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(n)=$\left\{\begin{array}{l}{2n-1,n為奇數(shù)}\\{f(\frac{n}{2}),n為偶數(shù)}\end{array}\right.$,若bn=f(2n+4),n∈N*,則數(shù)列{bn}的前n(n≥3)項(xiàng)和Sn等于2n+n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,當(dāng)甲船位于A處時獲悉,在其正東方向相距10海里的B處有個艘漁船遇險等待營救,甲船立即前往營救,同時把消息告知在甲船的南偏西30°,相距6海里的C處的乙船,乙船立即朝北偏東(θ+30°)的方向沿直線前往B處營救,則sinθ的值為$\frac{5\sqrt{3}}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個幾何體的三視圖如圖所示(其中主視圖的弧線為四分之一圓周),則該幾何體的體積為( 。
A.64-4πB.64+6πC.48+4πD.64-6π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知在四棱錐C-ABDE中,DB⊥平面ABC,AE∥DB,△ABC是邊長為2的等邊三角形,AE=1,M為AB的中點(diǎn).
(1)求證:CM⊥EM;
(2)若直線DM與平面ABC所成角的正切值為2,求二面角B-CD-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知M是拋物線x2=16y上任意一點(diǎn),A(0,4),B(-1,1),則|MA|+|MB|的最小值為( 。
A.$\sqrt{10}$B.3C.8D.5

查看答案和解析>>

同步練習(xí)冊答案