分析 根據(jù)題意可得m、n滿足的不等式組,在mon坐標(biāo)系內(nèi)作出不等式組對應(yīng)的平面區(qū)域,利用線性規(guī)劃,結(jié)合兩點(diǎn)間的距離是即可得到結(jié)論.
解答 解:∵點(diǎn)P是△ABC內(nèi)一點(diǎn)(不包括邊界),$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,(m.n∈R),
∴實(shí)數(shù)m、n滿足不等式組$\left\{\begin{array}{l}{m>0}\\{n>0}\\{m+n<1}\end{array}\right.$,
在mon坐標(biāo)系內(nèi)作出不等式組表示的平面區(qū)域,
得到如圖所示的△MN0內(nèi)部(不含邊界),其中M(1,0),N(0,1),O是坐標(biāo)原點(diǎn).
∵m2+n2-2m-2n+3=(m-1)2+(n-1)2+1.
設(shè)P(m,n)是區(qū)域內(nèi)一點(diǎn),Q(1,1)
∵|PQ|=$\sqrt{(m-1)^{2}+(n-1)^{2}}$,
∴z=(m-1)2+(n-1)2+1表示P、Q連線段長的平方加1.
運(yùn)動(dòng)點(diǎn)P,可得當(dāng)P與Q在MN上的射影重合時(shí),|PQ|達(dá)到最小值,
當(dāng)P與原點(diǎn)O重合時(shí),|PQ|達(dá)到最大值.
∵點(diǎn)P到MN的距離為d1=$\frac{|1+1-1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,|PO|=$\sqrt{{(0-1)}^{2}+{(0-1)}^{2}}$=$\sqrt{2}$,
∴(m-1)2+(n-1)2∈($({\frac{\sqrt{2}}{2})}^{2}$,$({\sqrt{2})}^{2}$),
即(m-1)2+(n-1)2的取值范圍是$(\frac{1}{2},2)$.
則z=(m-1)2+(n-1)2+1∈$(\frac{3}{2},3)$
故答案為:$(\frac{3}{2},3)$
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,以平面向量為載體,求(m-1)2+(n-1)2+1的取值范圍.著重考查了向量的線性運(yùn)算、二元一次不等式組表示的平面區(qū)域和點(diǎn)到直線的距離公式等知識(shí),綜合性較強(qiáng),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,11] | B. | [-3,13] | C. | [-5,13] | D. | [-5,11] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{4}$,1+$\frac{\sqrt{2}}{2}$] | B. | ($\frac{1}{4}$,1] | C. | ($\frac{1}{4}$,+∞) | D. | ($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24$π-24\sqrt{3}$ | B. | 36$π-36\sqrt{3}$ | C. | 36$π-24\sqrt{3}$ | D. | 48$π-36\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24種 | B. | 48種 | C. | 120種 | D. | 124種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com