(本小題滿分12分)在直三棱柱(側(cè)棱垂直底面)
中,
,
,且異面直線
與
所成的角等于
.
(Ⅰ)求棱柱的高;
(Ⅱ)求
與平面
所成的角的大小.
(1)1(2)
試題分析:解:解:(Ⅰ)由三棱柱
是直三棱柱可知,
即為其高.
如圖,因為
∥
,所以
是異面直線
與
所成的角或其補角.
連接
,因為
,所以
.
在Rt△
中,由
,
,可得
.…………… 3分
又異面直線
與
所成的角為
,所以
,即△
為正三角形.
于是
.
在Rt△
中,由
,得
,即棱柱的高為
.……6分
(Ⅱ)連結(jié)
,設(shè)
,由(Ⅰ)知,
,
所以矩形
是正方形,所以
.
又由
得
,于是得
平面
.
故
就是
與平面
所成的角. ………………………… 9分
在Rt△
中,由
,
,
可得
.
在Rt△
中,由
,
,
得
,故
.
因此
與平面
所成的角
. ………………………………………… 12分
點評:對于幾何體中的高的求解,可以借助于勾股定理來得到,同時對于線面角的求解,一般分為三步驟:先作,二證,三解。這也是所有求角的一般步驟,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題15分)如圖,在四棱錐
中,
底面
,
,
,
,
,
是
的中點。
(Ⅰ)證明:
;
(Ⅱ)證明:
平面
;
(Ⅲ)求二面角
的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)
為兩兩不重合的平面,
為兩兩不重合的直線,給出下列四個命題:
①若
,
,則
;
②若
,
,則
;
③若
,
,
,
,則
;
④若
,
,
,
,則
。
其中命題正確的是
.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(如圖),具有公共
軸的兩個直角坐標平面
和
所成的二面角
等于
.已知
內(nèi)的曲線
的方程是
,求曲線
在
內(nèi)的射影的曲線方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
將銳角為
且邊長是2的菱形
,沿它的對角線
折成60°的二面角,則( )
①異面直線
與
所成角的大小是
.
②點
到平面
的距離是
.A.90°, | B.90°, | C.60°, | D.60°,2 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,長方體
中,
,
,點
在
上,且
.
(Ⅰ)證明:
平面
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱錐
中,
底面
,點
,
分別在棱
上,且
(Ⅰ)求證:
平面
;
(Ⅱ)當
為
的中點時,求
與平面
所成的角的正弦值;
(Ⅲ)是否存在點
使得二面角
為直二面角?若存在,請確定點E的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知直線
,平面
,且
,
,給出下列命題
(1)若
,則
(2)若
,則
(3)若
,則
(4)若
,則
其中正確的命題個數(shù)是( )
查看答案和解析>>