【題目】已知函數(shù)

當(dāng)時,,求實數(shù)a的取值范圍;

當(dāng)時,曲線和曲線是否存在公共切線?并說明理由.

【答案】(1);(2)存在公共切線,理由詳見解析.

【解析】

(1)構(gòu)造函數(shù),求出其最大值,解不等式即可得到實數(shù)的取值范圍;

(2)假設(shè)存在這樣的直線且直線與曲線和曲線分別相切與點.分別求出兩條切線方程,根據(jù)斜率與縱截距建立方程組,減元后得到,構(gòu)造新函數(shù)研究單調(diào)性與極值即可.

解:,則.

,則,若,則.

所以上是增函數(shù),在上是減函數(shù).

所以的極大值點,也是的最大值點,即.

恒成立,則只需,解得.

所以實數(shù)的取值范圍是.

假設(shè)存在這樣的直線且與曲線和曲線分別相切與點.

,得.

曲線在點處的切線方程為,即.

同理可得,

曲線在點處的切線方程為,即.

所以,即

構(gòu)造函數(shù)

存在直線與曲線和曲線相切,

等價于函數(shù)上有零點

對于.

當(dāng)時,,在上單調(diào)遞增.

當(dāng)時,因為,所以上是減函數(shù).

,,所以存在,使得,即.

且當(dāng)時,當(dāng)時,.

綜上,上是增函數(shù),在上是減函數(shù).

所以的極大值,也是最大值,且.

,,所以內(nèi)和內(nèi)各有一個零點.

故假設(shè)成立,即曲線和曲線存在公共切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線的斜率為1的切線方程;

(Ⅱ)當(dāng)時,求證:

(Ⅲ)設(shè),記在區(qū)間上的最大值為Ma),當(dāng)Ma)最小時,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機構(gòu)組織語文、數(shù)學(xué)學(xué)科能力競賽,按照一定比例淘汰后,頒發(fā)一二三等獎.現(xiàn)有某考場的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,其中數(shù)學(xué)科目成績?yōu)槎泉劦目忌?/span>人.

(Ⅰ)求該考場考生中語文成績?yōu)橐坏泉劦娜藬?shù);

(Ⅱ)用隨機抽樣的方法從獲得數(shù)學(xué)和語文二等獎的學(xué)生中各抽取人,進行綜合素質(zhì)測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進行比較分析;

(Ⅲ)已知本考場的所有考生中,恰有人兩科成績均為一等獎,在至少一科成績?yōu)橐坏泉劦目忌,隨機抽取人進行訪談,求兩人兩科成績均為一等獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下說法錯誤的是( )

A.復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面上對應(yīng)的點的軌跡為直線.

B.上連續(xù)可導(dǎo)的函數(shù),若,則為極值點.

C.,,則.

D.為拋物線的兩點,為坐標(biāo)原點,若,則直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)討論函數(shù)的單調(diào)性;

2)證明:在區(qū)間上只有唯一的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某品種一批樹苗生長情況,在該批樹苗中隨機抽取了容量為的樣本,測量樹苗高度(單位:),經(jīng)統(tǒng)計,其高度均在區(qū)間內(nèi),將其按,,,,分成組,制成如圖所示的頻率分布直方圖.其中高度為27cm及以上的樹苗為優(yōu)質(zhì)樹苗.

(1)求圖中的值;

(2)已知所抽取這棵樹苗來自于兩個試驗區(qū),部分數(shù)據(jù)如下列聯(lián)表:將列聯(lián)表補充完整,并判斷是否有的把握認為優(yōu)質(zhì)樹苗與兩個試驗區(qū)有關(guān)系,并說明理由;

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間x與乘客等候人數(shù)y之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):

調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求與實際等候人數(shù)y的差,若差值的絕對值不超過1,則稱所求方程是“恰當(dāng)回歸方程”.

(1)若選取的是后面4組數(shù)據(jù),求y關(guān)于x的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;

(2)為了使等候的乘客不超過35人,試用(1)中方程估計間隔時間最多可以設(shè)置為多少(精確到整數(shù))分鐘?

附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),……,(xn,yn),其回歸直線的斜率和截距的最小二乘估計分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的數(shù)陣中每一行從左到右均是首項為1,項數(shù)為n的等差數(shù)列,設(shè)第行的等差數(shù)列中的第k項為2,3,,,公差為,若,,且,,也成等差數(shù)列.

;

關(guān)于m的表達式;

若數(shù)陣中第i行所有數(shù)之和,第j列所有數(shù)之和為,是否存在i,j滿足,使得成立?若存在,請求出i,j的一組值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2014·長春模擬)對甲、乙兩名自行車賽手在相同條件下進行了6次測試,測得他們的最大速度(m/s)的數(shù)據(jù)如下表:


27

38

30

37

35

31


33

29

38

34

28

36

(1)畫出莖葉圖.

(2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、方差,并判斷選誰參加比賽更合適?

查看答案和解析>>

同步練習(xí)冊答案