分析 由于已知的兩個等式結(jié)構(gòu)相似,因此可考慮構(gòu)造函數(shù).將已知等式變形為(a-1)3+2(a-1)=-2,(b-1)3+2(b-1)=2,構(gòu)造函數(shù)f(x)=x3+2x,f(x)是一個單調(diào)遞增的奇函數(shù),從而可求a+b的值.
解答 解:由于已知的兩個等式結(jié)構(gòu)相似,因此可考慮構(gòu)造函數(shù).
將已知等式變形為(a-1)3+2(a-1)=-2,(b-1)3+2(b-1)=2,
構(gòu)造函數(shù)f(x)=x3+2x,
∵f(-x)=-f(x),
∴f(x)是奇函數(shù),
∵f′(x)=3x2+2>0,
∴f(x)單調(diào)遞增,
∴f(x)是一個單調(diào)遞增的奇函數(shù),
因為f(a-1)=-2,f(b-1)=2,
所以f(a-1)=-f(b-1)=f(1-b),
從而有a-1=1-b,a+b=2.
故答案為:2.
點評 本題以等式為載體,考查構(gòu)造法的運用,考查函數(shù)的性質(zhì),解題的關(guān)鍵是根據(jù)已知的兩個等式結(jié)構(gòu)相似來構(gòu)造函數(shù),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 0 | 1 | 4 | 5 | 6 |
y | 1.3 | m | 3m | 5.6 | 7.4 |
A. | 1.426 | B. | 1.514 | C. | 1.675 | D. | 1.732 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 200 | B. | 300 | C. | 400 | D. | 500 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{8}$個單位 | B. | 向左平移$\frac{π}{4}$個單位 | ||
C. | 向右平移$\frac{π}{8}$個單位 | D. | 向右平移$\frac{π}{4}$個單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com