分析 分離參數(shù),求最小值,即可確定實數(shù)a的取值范圍.
解答 解:由題意,?x∈[-1,2],x2+1≥x+a,
∴a≤x2+1-x
∵x∈[-1,2],
∴x2+1-x=(x-$\frac{1}{2}$)2+$\frac{3}{4}$∈[$\frac{3}{4}$,3]
∴a≤$\frac{3}{4}$.
故答案為:a≤$\frac{3}{4}$.
點評 本題考查二次函數(shù)的性質(zhì),解題的關(guān)鍵是理解二次函數(shù)的性質(zhì),且能根據(jù)二次函數(shù)的性質(zhì)將題設(shè)中恒成立的條件轉(zhuǎn)化成關(guān)于所求參數(shù)的不等式,解出a的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<b<a | C. | b<a<c | D. | a<c<b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com