(x
x
+
1
3
x
n的展開式奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和為128,則求展開式中二項(xiàng)式系數(shù)最大項(xiàng)?
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:根據(jù)2n-1=128,求得n=8,可得展開式中二項(xiàng)式系數(shù)最大項(xiàng)是第五項(xiàng),再利用通項(xiàng)公式求出此項(xiàng).
解答: 解:由題意可得
C
1
n
+
C
3
n
+
C
5
n
+…=128,2n-1=128,n=8
,
故展開式中二項(xiàng)式系數(shù)最大項(xiàng)是T4+1=
C
4
8
(x
x
)4(
1
3x
)4=70x4
3x2
點(diǎn)評:本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知AB和CD是曲線C:
x=4t2
y=4t
(t為參數(shù))的兩條相交于點(diǎn)P(2,2)的弦,若AB⊥CD,且|PA|•|PB|=|PC|•|PD|.
(1)將曲線C的參數(shù)方程化為普通方程,并說明它表示什么曲線;
(2)試求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從5名女同學(xué)和4名男同學(xué)中選出4人參加演講比賽,分別按下列要求,各有多少種不同選法?
(1)男、女同學(xué)各2名;
(2)男、女同學(xué)分別至少有1名.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1+x

(Ⅰ)求函數(shù)λ=[f(x)+f(-x)]2的值域;
(Ⅱ)設(shè)a為實(shí)數(shù),記函數(shù)h(x)=f(x)+f(-x)+af(x)•f(-x)的最大值為H(a).
(。┣驢(a)的表達(dá)式;
(ⅱ)試求滿足H(a)=H(
1
a
)的所有實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+ax+1,a∈R.
(Ⅰ)求f(x)在x=1處的切線方程;
(Ⅱ)若不等式f(x)≤0恒成立,求a的取值范圍;
(Ⅲ)數(shù)列{an}中,a1=2,2an+1=an+1,數(shù)列{bn}滿足bn=nlnan,記{bn}的前n項(xiàng)和為Tn.求證:Tn<4-
n+2
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2an+2a1-1,其中n∈N*
(Ⅰ)求an及Sn;
(Ⅱ)對任意n∈N*,試比較an
1
2n
的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1,F(xiàn)2是橢圓Γ的兩焦點(diǎn).
(Ⅰ)若P是橢圓Γ上的任一點(diǎn),|PF1|+|PF2|=4且橢圓Γ的離心率e=
1
2
,求軌跡Γ的方程;
(Ⅱ)已知兩直線l1,l2,直線l1:y=k1x+m(m≠0)交橢圓Γ于A、B兩點(diǎn),若C為AB的中點(diǎn),直線l2:y=k2x過點(diǎn)C.求證:k1•k2=-
b2
a2
;
(Ⅲ)圓錐曲線在某些性質(zhì)方面呈現(xiàn)出統(tǒng)一性.在(Ⅱ)中,我們得到關(guān)于橢圓的一個(gè)優(yōu)美結(jié)論.請你寫出關(guān)于雙曲線E:
x2
a2
-
y2
b2
=1的一個(gè)相類似的結(jié)論(不需證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex+x+1(x<0)
-
1
3
x3+2x(x≥0)
,給出如下四個(gè)命題:
(1)f(x)在[
2
,+∞)上是減函數(shù)   
(2)f(x)的最大值是2
(3)函數(shù)y=f(x)有三個(gè)零點(diǎn)   
(4)f(x)≤
4
3
2
在R上恒成立
其中正確命題有
 
.(把正確命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c滿足f(-1+x)=f(-1-x),且f(0)=-3,則函數(shù)y=
x2+bx+c
的定義域?yàn)?div id="xqtviob" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊答案