若(x+
3
4=a0+a1x+a2x2+a3x3+a4x4,則(a0+a2+a42-(a1+a32的值為( 。
A、-16
B、16
C、
3
-1
D、
3
+1
考點(diǎn):二項(xiàng)式定理的應(yīng)用
專題:計(jì)算題,二項(xiàng)式定理
分析:在(x+
3
4=a0+a1x+a2x2+a3x3+a4x4中利用賦值法,分別令x=1可求a0+a1+a2+a3+a4,令x=-1可求a0-a1+a2-a3+a4),而(a0+a2+a42-(a1+a32=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4),代入可求.
解答: 解:在(x+
3
4=a0+a1x+a2x2+a3x3+a4x4
令x=1可得,a0+a1+a2+a3+a4=(1+
3
)4

令x=-1可得,a0-a1+a2-a3+a4=(-1+
3
)4

∴(a0+a2+a42-(a1+a32=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=16
故選:B.
點(diǎn)評:本題主要考查了二項(xiàng)展開式中利用賦值法求解二項(xiàng)展開式的各項(xiàng)系數(shù)之和(注意是各項(xiàng)系數(shù)之和,要區(qū)別于二項(xiàng)式系數(shù)之和),解答本題還要注意所求式子的特點(diǎn):符合平方差公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

運(yùn)行如圖所示的程序框圖后,輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(
3
sinωx,cosωx),b=(cosωx,cosωx),ω>0,x∈R,f(x)=a•b-
1
2
,且f(x)的周期是π,設(shè)△ABC三個(gè)角A,B,C的對邊分別為a,b,c
(Ⅰ)求ω的值;
(Ⅱ)若c=
7
,f(C)=
1
2
,sinB=3sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由y=ex,x=0,y=2所圍成的曲邊梯形的面積為( 。
A、
2
1
lnydy
B、
x2
0
exdy
C、
ln2
1
lnydy
D、
2
1
(2-ex)dx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀右邊程序框圖,為使輸出的數(shù)據(jù)為30,則判斷框中應(yīng)填入的條件為( 。
A、i≤4B、i≤5′
C、i≤6D、i≤7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=sin(2x+θ)的圖象向左平移
π
3
個(gè)單位后恰好與y=sin2x的圖象重合,則θ的最小正值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a>0,b<0,方程x2-ax+b=0在區(qū)間(-1,1)上恰有一根,求
a+1
b+1
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求直線x=1,x=2,y=0與曲線y=x2+2x+1圍成曲邊梯形的面積.(要求:用分割,近似代替,求和,取極限等方法解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a1=5,a10=41,則S11=
 

查看答案和解析>>

同步練習(xí)冊答案