18.設(shè)全集U={0,1,2,3,4},集合A={0,1,3},集合B={2,3},則∁U(A∪B)=(  )
A.{4}B.{0,1,2,3}C.{3}D.{0,1,2,4}

分析 由A與B,求出A與B的并集,根據(jù)全集U,求出并集的補(bǔ)集即可.

解答 解:∵A={0,1,3},B={2,3},
∴A∪B={0,1,2,3},
∵全集U={0,1,2,3,4},
∴∁U(A∪B)={4},
故選:A.

點(diǎn)評 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知命題p:關(guān)于x的不等式x2+2ax+4>0對一切x∈R恒成立,命題q:f(x)=(4-3a)x是增函數(shù),若p或q為真,p且q為假.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合S={x|x2-5x+6≥0},T={x|x>1},則S∩T=( 。
A.[2,3]B.(1,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直線l的方向向量為$\vec s=(1,2,x)$,平面α的法向量$\vec n=(-2,y,2)$,若l?α,則xy的最大值為( 。
A.1B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.閱讀如圖的程序框圖,則輸出的S等于(  )
 
A.55B.30C.20D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)P,Q分別是圓x2+(y-1)2=3和橢圓$\frac{x^2}{4}+{y^2}=1$上的點(diǎn),則P,Q兩點(diǎn)間的最大距離是$\frac{7\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.近年來我國電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇.2016年雙11期間,某購物平臺的銷售業(yè)績高達(dá)918億人民幣.與此同時,相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進(jìn)行統(tǒng)計(jì),對商品的好評率為0.6,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都作出好評的交易為80次.
(1)能否在犯錯誤的概率不超過0.001的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?
(2)若將頻率視作概率,某人在該購物平臺上進(jìn)行5次購物中,設(shè)對商品和服務(wù)全好評的次數(shù)為隨機(jī)變量X:
①求對商品和服務(wù)全為好評的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方程.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知某幾何體的三視圖如圖所示,則其體積為(  )
A.$2\sqrt{3}$B.$\frac{{5\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某公司的班車在7:00,8:00,8:30發(fā)車,小明在7:50至8:30之間到達(dá)發(fā)車站乘坐班車,且到達(dá)發(fā)車站的時刻是隨機(jī)的,則他等車時間不超過10分鐘的概率是$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案