【題目】求下列各曲線的標準方程.
(1)長軸長為,離心率為,焦點在軸上的橢圓;
(2)已知雙曲線的漸近線方程為,焦距為,求雙曲線的標準方程.
【答案】(1);(2)或.
【解析】試題分析:本題主要考查橢圓與雙曲線的方程與性質.(1) 設橢圓的方程為,由題意可得2a=12, ,求出a,b,c可得橢圓方程;(2)分雙曲線的焦點在x軸與y軸上兩種情況,結合條件漸近線方程為,焦距為進行求解.
試題解析:
(1)設橢圓的方程為,
由題意可得2a=12, ,
求解可得,
所以橢圓的標準方程為;
(2)當雙曲線的焦點在x軸上時,
設雙曲線的方程為
因為雙曲線的漸近線方程為,焦距為,
所以,
求解可得,
所以雙曲線的方程為;
當雙曲線的焦點在y軸上時,
設雙曲線的方程為
因為雙曲線的漸近線方程為,焦距為,
所以,
求解可得,
所以雙曲線的方程為.
所以雙曲線的標準方程為或.
科目:高中數學 來源: 題型:
【題目】如圖1,在直角梯形中,,,且.現以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,為的中點,如圖2.
(1)求證:平面;
(2)求證:平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,若橢圓與圓相交于兩點,且圓在橢圓內的弧長為.
(1)求的值;
(2)過橢圓的中心作兩條直線交橢圓于和四點,設直線的斜率為, 的斜率為,且.
①求直線的斜率;
②求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R。
(1)求f(x)的單調區(qū)間;
(2)若f(x)存在極點x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=3;
(3)設a>0,函數g(x)=∣f(x)∣,求證:g(x)在區(qū)間[0,2]上的最大值不小于
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地隨著經濟的發(fā)展,居民收入逐年增長,下表是該地一建設銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數據進行了處理, 得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關于t的線性回歸方程;
(Ⅱ)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?
(附:對于線性回歸方程,其中)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,曲線由曲線和曲線組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點,
(1)若,求曲線的方程;
(2)如圖,作直線平行于曲線的漸近線,交曲線于點,
求證:弦的中點必在曲線的另一條漸近線上;
(3)對于(1)中的曲線,若直線過點交曲線于點,求△面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ)的部分圖象如圖所示.
(1)求f(x)的最小正周期及解析式;
(2)設函數g(x)=f(x)-cos 2x,求g(x)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點,求拋物線C的方程;
(2)已知拋物線C上存在關于直線l對稱的相異兩點P和Q.
①求證:線段PQ的中點坐標為(2-p , -p);
②求p的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com