【題目】已知函數(shù),的導(dǎo)函數(shù)為.
(1)試討論函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若對(duì)任意的,關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)詳見解析;(2).
【解析】
(1)先求函數(shù)的定義域,然后求函數(shù)的導(dǎo)數(shù),對(duì)分類討論,將的零點(diǎn)問題,轉(zhuǎn)化為直線與函數(shù)圖象的交點(diǎn)個(gè)數(shù)來求解出來.(2)構(gòu)造函數(shù),將原問題轉(zhuǎn)化為對(duì)恒成立,先利用確定的一個(gè)范圍,然后利用的二階導(dǎo)數(shù)驗(yàn)證在這個(gè)范圍內(nèi),的最大值不大于零,由此求得的取值范圍.
解:(1)由題意得的定義域?yàn)?/span>,.
(i)當(dāng)時(shí),,此時(shí)沒有零點(diǎn);
(ii)當(dāng)時(shí),,
的零點(diǎn)個(gè)數(shù)等于直線與函數(shù)圖象的交點(diǎn)個(gè)數(shù),可知直線與函數(shù)圖象的相切點(diǎn),此時(shí)切線的斜率為.
①當(dāng),即時(shí),兩個(gè)圖象沒有交點(diǎn),即函數(shù)沒有零點(diǎn);
②當(dāng),即時(shí),兩個(gè)圖象有兩個(gè)交點(diǎn),即函數(shù)有兩個(gè)零點(diǎn);
③當(dāng),即時(shí)兩個(gè)圖象有一個(gè)交點(diǎn),即函數(shù)有一個(gè)零點(diǎn);
④當(dāng),即時(shí),兩個(gè)圖象有一個(gè)交點(diǎn),即函數(shù)有一個(gè)零點(diǎn).
綜上,當(dāng)時(shí),函數(shù)沒有零點(diǎn);
當(dāng)或時(shí),有一個(gè)零點(diǎn);
當(dāng)時(shí),有兩個(gè)零點(diǎn).
(2)設(shè) ,
要使原不等式恒成立,則只要對(duì)恒成立,
所以.
令,則.
由于“對(duì)恒成立”的一個(gè)必要條件是,即.
當(dāng)時(shí),,,
所以在上單調(diào)遞減.
所以,,從而在上單調(diào)遞減,則,,
所以實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心為(1,1),直線與圓C相切.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線過點(diǎn)(2,3),且被圓C所截得的弦長為2,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段的延長線上,且滿足,點(diǎn)的軌跡為.
(1)求,的極坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,求△面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,AB⊥AD,AB⊥BC,側(cè)面SAB⊥底面ABCD,且SA=SB=AB=BC=2,AD=1.
(1)設(shè)E為棱SB的中點(diǎn),求證:AE⊥平面SBC;
(2)求平面SCD與平面SAB所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)討論函數(shù)的單調(diào)性;
(II)若存在兩個(gè)極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.
(1)求證:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)求點(diǎn)C到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的所有棱長均為2,底面側(cè)面, , 為的中點(diǎn), .
(1)證明: .
(2)若是棱上一點(diǎn),滿足,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動(dòng)中,教委對(duì)本區(qū)四所高中學(xué)校按各校人數(shù)分層抽樣,隨機(jī)抽查了100人,將調(diào)查情況進(jìn)行整理后制成下表:
學(xué)校 | ||||
抽查人數(shù) | 50 | 15 | 10 | 25 |
“創(chuàng)城”活動(dòng)中參與的人數(shù) | 40 | 10 | 9 | 15 |
(注:參與率是指:一所學(xué)!皠(chuàng)城”活動(dòng)中參與的人數(shù)與被抽查人數(shù)的比值)假設(shè)每名高中學(xué)生是否參與”創(chuàng)城”活動(dòng)是相互獨(dú)立的.
(1)若該區(qū)共2000名高中學(xué)生,估計(jì)學(xué)校參與“創(chuàng)城”活動(dòng)的人數(shù);
(2)在隨機(jī)抽查的100名高中學(xué)生中,隨機(jī)抽取1名學(xué)生,求恰好該生沒有參與“創(chuàng)城”活動(dòng)的概率;
(3)在上表中從兩校沒有參與“創(chuàng)城”活動(dòng)的同學(xué)中隨機(jī)抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動(dòng)的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com