【題目】如圖,在三棱柱 中,點(diǎn)E,F(xiàn)分別是棱CC1 , BB1上的點(diǎn),點(diǎn)M是線段AC上的動(dòng)點(diǎn),EC=2FB=2,若MB∥平面AEF,試判斷點(diǎn)M的位置.

【答案】解:過(guò)F,B,M作平面FBMN交AE于N.
因?yàn)锽F∥平面AA1C1C,BF 平面FBMN,平面FBMN∩平面AA1C1C=MN,
所以BF∥MN.又MB∥平面AEF,MB 平面FBMN,平面FBMN∩平面AEF=FN,所以MB∥FN,所以BFNM是平行四邊形,
所以MN=BF=1.又EC∥FB,EC=2FB=2,
所以MN∥EC,MN= ,故MN是△ACE的中位線.
所以M是AC的中點(diǎn)時(shí),MB∥平面AEF.

【解析】要使MB∥平面AEF,由過(guò)F,B,M作的平面FBMN與BF平行,再得到BFNM是平行四邊形,故MN是△ACE的中位線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體,它的下面是一個(gè)圓柱,上面是一個(gè)圓錐,并且圓錐的底面與圓柱的上底面重合,圓柱的底面直徑為3 cm,高為4 cm,圓錐的高為3 cm,畫(huà)出此幾何體的直觀圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a為常數(shù)) (Ⅰ)當(dāng)a=4時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范圍;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一個(gè)實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式[2tx2﹣(t2﹣1)x+2]lnx≤0對(duì)任意x∈(0,+∞)恒成立,則實(shí)數(shù)t的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地方政府欲將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂(lè)廣場(chǎng),已知AD∥BC,AD⊥AB,AD=2BC=2 百米,AB=3百米,廣場(chǎng)入口P在AB上,且AP=2BP,根據(jù)規(guī)劃,過(guò)點(diǎn)P鋪設(shè)兩條互相垂直的筆直小路PM、PN(小路寬度不計(jì)),點(diǎn)M、N分別在邊AD、BC上(包含端點(diǎn)),△PAM區(qū)域擬建為跳舞健身廣場(chǎng),△PBN區(qū)域擬建為兒童樂(lè)園,其他區(qū)域鋪設(shè)綠化草坪,設(shè)∠APM=θ.
(1)求綠化草坪面積的最大值;
(2)現(xiàn)擬將兩條小路PN、PN進(jìn)行不同風(fēng)格的美化,小路PM的美化費(fèi)用為每百米1萬(wàn)元,小路PN的美化費(fèi)用為每百米2萬(wàn)元,試確定點(diǎn)M,N的位置,使得小路PM,PN的總美化費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)定點(diǎn) ,動(dòng)點(diǎn)P滿(mǎn)足 .設(shè)動(dòng)點(diǎn)P的軌跡為曲線E,直線 .
(1)求曲線E的軌跡方程;
(2)若l與曲線E交于不同的C,D兩點(diǎn),且 (O為坐標(biāo)原點(diǎn)),求直線l的斜率;
(3)若 是直線l上的動(dòng)點(diǎn),過(guò)Q作曲線E的兩條切線QM,QN,切點(diǎn)為M,N,探究:直線MN是否過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知g(x)是各項(xiàng)系數(shù)均為整數(shù)的多項(xiàng)式,f(x)=2x2﹣x+1,且滿(mǎn)足f(g(x))=2x4+4x3+13x2+11x+16,則g(x)的各項(xiàng)系數(shù)之和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f(x)=Acos(ωx+φ)(A,ω>0)的圖象如圖所示,為得到g(x)=﹣Asin(ωx+ )的圖象,可以將f(x)的圖象(
A.向右平移 個(gè)單位長(zhǎng)度
B.向右平移 個(gè)單位長(zhǎng)度
C.向左平移 個(gè)單位長(zhǎng)度
D.向左平移 個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一邊長(zhǎng)為6的正方形鐵片,在鐵片的四角各截去一個(gè)邊長(zhǎng)為x的小正方形后,沿圖中虛線部分折起,做成一個(gè)無(wú)蓋方盒.
(1)試用x表示方盒的容積V(x),并寫(xiě)出x的范圍;
(2)求方盒容積V(x)的最大值及相應(yīng)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案