如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點(diǎn),直線(xiàn):x=-將線(xiàn)段F1F2分成兩段,其長(zhǎng)度之比為1 : 3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線(xiàn)段AB的中垂線(xiàn)與C交于P,Q兩點(diǎn),線(xiàn)段AB的中點(diǎn)M在直線(xiàn)l上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.
(Ⅰ) (Ⅱ) [,)
解析試題分析: (Ⅰ) 設(shè)F2(c,0),則
=,所以c=1.
因?yàn)殡x心率e=,所以a=.
所以橢圓C的方程為. 6分
(Ⅱ) 當(dāng)直線(xiàn)AB垂直于x軸時(shí),直線(xiàn)AB方程為x=-,此時(shí)P(,0)、Q(,0)
.
當(dāng)直線(xiàn)AB不垂直于x軸時(shí),設(shè)直線(xiàn)AB的斜率為k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).
由 得(x1+x2)+2(y1+y2)=0,
則-1+4mk=0,故k=.
此時(shí),直線(xiàn)PQ斜率為,PQ的直線(xiàn)方程為.
即.
聯(lián)立 消去y,整理得.
所以,.
于是(x1-1)(x2-1)+y1y2
.
令t=1+32m2,1<t<29,則.
又1<t<29,所以.
綜上,的取值范圍為[,). 15分
考點(diǎn):本題主要考查橢圓的幾何性質(zhì),直線(xiàn)與橢圓的位置關(guān)系等基礎(chǔ)知識(shí),同時(shí)考查解析幾何的基本思想方法和綜合解題能力。
點(diǎn)評(píng):圓錐曲線(xiàn)問(wèn)題每年高考都在壓軸題的位置出現(xiàn),難度較大,但是一般也離不開(kāi)直線(xiàn)與圓聯(lián)立方程,運(yùn)算量較大,要注意數(shù)形結(jié)合、設(shè)而不求等方法的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓,是長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,聯(lián)結(jié),交橢圓于點(diǎn).
(1)當(dāng),時(shí),設(shè),求的值;
(2)若為常數(shù),探究滿(mǎn)足的條件?并說(shuō)明理由;
(3)直接寫(xiě)出為常數(shù)的一個(gè)不同于(2)結(jié)論類(lèi)型的幾何條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直接坐標(biāo)系中,直線(xiàn)的方程為,曲線(xiàn)的參數(shù)方程為(為參數(shù)).
(I)已知在極坐標(biāo)(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,點(diǎn)的極坐標(biāo)為(4,),判斷點(diǎn)與直線(xiàn)的位置關(guān)系;
(II)設(shè)點(diǎn)是曲線(xiàn)上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線(xiàn)與軌跡交于兩點(diǎn).
(Ⅰ)寫(xiě)出軌跡的方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是橢圓的左、右焦點(diǎn),是橢圓上位于第一象限內(nèi)的一點(diǎn),點(diǎn)也在橢圓上,且滿(mǎn)足(是坐標(biāo)原點(diǎn)),,若橢圓的離心率為.
(1)若的面積等于,求橢圓的方程;
(2)設(shè)直線(xiàn)與(1)中的橢圓相交于不同的兩點(diǎn),已知點(diǎn)的坐標(biāo)為(),點(diǎn)在線(xiàn)段的垂直平分線(xiàn)上,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn),動(dòng)點(diǎn)滿(mǎn)足.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)(1)中所求軌跡與直線(xiàn)交于點(diǎn)、兩點(diǎn) ,求證(為原點(diǎn))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓的離心率為,兩焦點(diǎn)分別為,點(diǎn)M是橢圓C上一點(diǎn),的周長(zhǎng)為16,設(shè)線(xiàn)段MO(O為坐標(biāo)原點(diǎn))與圓交于點(diǎn)N,且線(xiàn)段MN長(zhǎng)度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點(diǎn)在橢圓C上運(yùn)動(dòng)時(shí),判斷直線(xiàn)與圓O的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)B(0,1),點(diǎn)C(0,—3),直線(xiàn)PB、PC都是圓的切線(xiàn)(P點(diǎn)不在y軸上).
(I)求過(guò)點(diǎn)P且焦點(diǎn)在x軸上拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(II)過(guò)點(diǎn)(1,0)作直線(xiàn)與(I)中的拋物線(xiàn)相交于M、N兩點(diǎn),問(wèn)是否存在定點(diǎn)R,使為常數(shù)?若存在,求出點(diǎn)R的坐標(biāo)與常數(shù);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平面內(nèi)與兩定點(diǎn)連線(xiàn)的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上 兩點(diǎn),所成的曲線(xiàn)可以是圓,橢圓或雙曲線(xiàn).
(Ⅰ)求曲線(xiàn)的方程,并討論的形狀與值的關(guān)系;
(Ⅱ)當(dāng)時(shí),對(duì)應(yīng)的曲線(xiàn)為;對(duì)給定的,對(duì)應(yīng)的曲線(xiàn)為,若曲線(xiàn)的斜率為的切線(xiàn)與曲線(xiàn)相交于兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求曲線(xiàn)的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com