分析 考慮到兩曲線關于直線y=x對稱,求丨PQ丨的最小值可轉化為求P到直線y=x的最小距離,再利用導數(shù)的幾何意義,求曲線上斜率為1的切線方程,由點到直線的距離公式即可得到最小值..
解答 解:∵曲線y=ex(e自然對數(shù)的底數(shù))與曲線y=lnx互為反函數(shù),其圖象關于y=x對稱,
故可先求點P到直線y=x的最近距離d,
設曲線y=ex上斜率為1的切線為y=x+b,
∵y′=ex,由ex=1,得x=0,
故切點坐標為(0,1),即b=1,
∴d=$\frac{1}{\sqrt{1+1}}$=$\frac{\sqrt{2}}{2}$,
∴丨PQ丨的最小值為2d=$\sqrt{2}$.
故答案為:$\sqrt{2}$.
點評 本題主要考查了互為反函數(shù)的函數(shù)圖象的對稱性,導數(shù)的幾何意義,曲線的切線方程的求法,轉化化歸的思想方法.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com