2.圓x2+y2-4x=0的圓心坐標和半徑r分別為( 。
A.圓心(-2,0),r=4B.圓心(2,0),r=2C.圓心(0,2),r=4D.圓心(0,-2),r=2

分析 把圓的方程利用配方法化為標準方程后,即可得到圓心與半徑.

解答 解:圓x2+y2-4x=0可化為(x-2)2+y2=4,
∴圓x2+y2-4x=0的圓心坐標和半徑分別為(2,0),2.
故選:B.

點評 本題考查了會把圓的一般方程化為標準方程,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.在△ABC中,已知$\sqrt{3}$tanAtanB-tanA-tanB=$\sqrt{3}$.
(1)求∠C的大小;
(2)設(shè)角A,B,C的對邊依次為a,b,c,若c=2,且△ABC是銳角三角形,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若f (x)=$\frac{e^x}{x}$,1<a<b,則( 。
A.f (a)>f (b)B.f (a)=f (b)C.f (a)<f (b)D.f (a)f (b)<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.正四面體ABCD的體積為V,P是正四面體ABCD內(nèi)部的一個點.
(1)設(shè)“VP-ABC≥$\frac{1}{4}$V”為事件X,求概率P(X)
(2)設(shè)“VP-ABC≥$\frac{1}{4}$V且VP-BCD≥$\frac{1}{4}$V”為事件Y,求概率P(Y)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設(shè)m,n是兩條不同的直線,α,β,γ是三個不同的平面,給出下列四個命題:
①若m⊥α,n∥α,則m⊥n;
②若α∥β,β∥γ,m⊥α,則m⊥γ;
③若m∥α,n∥β,α∥β,則m∥n;
④若α⊥γ,β⊥γ,則α∥β.
其中正確命題的序號是①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知銳角△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若sin A=$\frac{3}{5}$,cos C=$\frac{5}{13}$,a=1,則b=( 。
A.$\frac{13}{21}$B.$\frac{21}{13}$C.$\frac{11}{13}$D.$\frac{13}{11}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列說法中,正確說法的個數(shù)是( 。
①命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”;
②“x>1”是“|x|>1”的充分不必要條件;
③集合A={1},B={x|ax-1=0},若B⊆A,則實數(shù)a的所有可能取值構(gòu)成的集合為{1}.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)i為虛數(shù)單位,則復(fù)數(shù)$\frac{3-4i}{i}$的虛部為(  )
A.3iB.3C.-3iD.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.等比數(shù)列{an}中,已知對任意正整數(shù)n,a1+a2+a3+…+an=2n+m,則a12+a22+a32+…+an2等于( 。
A.$\frac{1}{3}({4^n}+m)$B.$\frac{1}{3}({2^n}-1)$C.(4n-1)D.(2n+m)2

查看答案和解析>>

同步練習冊答案