【題目】我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個偉大成就,在“楊輝三角”中,第行的所有數(shù)字之和為,若去除所有為1的項,依次構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前15項和為( )
A. 110B. 114C. 124D. 125
【答案】B
【解析】
利用二項式系數(shù)對應(yīng)的楊輝上三角形的第行,令,得到二項展開式的二項式系數(shù)的和,再結(jié)合等差、等比數(shù)列的求和公式,即可求解.
由題意,次二項式系數(shù)對應(yīng)的楊輝三角形的第行,
令,可得二項展開式的二項式系數(shù)的和,
其中第1行為,第2行為,第3行為, 以此類推,
即每一行的數(shù)字之和構(gòu)成首項為1,公比為2的對邊數(shù)列,
則楊輝三角形中前行的數(shù)字之和為,
若除去所有為1的項,則剩下的每一行的數(shù)字的個數(shù)為
可以看成構(gòu)成一個首項為1,公差為2的等差數(shù)列,則,
令,解得,
所以前15項的和表示前7行的數(shù)列之和,減去所有的1,即,
即前15項的數(shù)字之和為114,故選B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)若對任意的實數(shù)x1,x2,x3,不等式f(x1)+f(x2)>f(x3)恒成立,則實數(shù)m的取值范圍是( )
A.[1,4)B.(1,4)C.()D.[]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為F,準線為l,A為C上一點,已知以F為圓心,FA為半徑的圓F交l于M.N點.
(1)若,的面積為,求拋物線方程;
(2)若A.M.F三點在同一直線m上,直線n與m平行,且n與C只有一個公共點,求坐標原點到直線n、m距離的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)y=f(x)圖象的對稱軸和對稱中心;
(Ⅱ)若函數(shù),的零點為x1,x2,求cos(x1﹣x2)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面為矩形的四棱錐中,底面ABCD,,MN分別為ADPC中點.
(1)證明:平面PAB;
(2)求異面直線MN與AB所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種水果按照果徑大小可分為四類:標準果、優(yōu)質(zhì)果、精品果、禮品果.某采購商從采購的一批水果中隨機抽取個,利用水果的等級分類標準得到的數(shù)據(jù)如下:
等級 | 標準果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
個數(shù) | 10 | 30 | 40 | 20 |
(1)若將頻率是為概率,從這個水果中有放回地隨機抽取個,求恰好有個水果是禮品果的概率.(結(jié)果用分數(shù)表示)
(2)用樣本估計總體,果園老板提出兩種購銷方案給采購商參考.
方案:不分類賣出,單價為元.
方案:分類賣出,分類后的水果售價如下:
等級 | 標準果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
售價(元/kg) | 16 | 18 | 22 | 24 |
從采購單的角度考慮,應(yīng)該采用哪種方案?
(3)用分層抽樣的方法從這個水果中抽取個,再從抽取的個水果中隨機抽取個,表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(x∈R,實數(shù)a∈[0,+∞),e=2.71828…是自然對數(shù)的底數(shù),).
(Ⅰ)若f(x)≥0在x∈R上恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若ex≥lnx+m對任意x>0恒成立,求證:實數(shù)m的最大值大于2.3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 .
(1)若是上的增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個極值點,判斷函數(shù)零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市疾控中心流感監(jiān)測結(jié)果顯示,自年月起,該市流感活動一度出現(xiàn)上升趨勢,尤其是月以來,呈現(xiàn)快速增長態(tài)勢,截止目前流感病毒活動度仍處于較高水平,為了預(yù)防感冒快速擴散,某校醫(yī)務(wù)室采取積極方式,對感染者進行短暫隔離直到康復(fù).假設(shè)某班級已知位同學(xué)中有位同學(xué)被感染,需要通過化驗血液來確定感染的同學(xué),血液化驗結(jié)果呈陽性即為感染,呈陰性即未被感染.下面是兩種化驗方法: 方案甲:逐個化驗,直到能確定感染同學(xué)為止;
方案乙:先任取個同學(xué),將它們的血液混在一起化驗,若結(jié)果呈陽性則表明感染同學(xué)為這位中的位,后再逐個化驗,直到能確定感染同學(xué)為止;若結(jié)果呈陰性則在另外位同學(xué)中逐個檢測;
(1)求依方案甲所需化驗次數(shù)等于方案乙所需化驗次數(shù)的概率;
(2)表示依方案甲所需化驗次數(shù),表示依方案乙所需化驗次數(shù),假設(shè)每次化驗的費用都相同,請從經(jīng)濟角度考慮那種化驗方案最佳.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com