【題目】已知定點(diǎn),圓C: ,
(1)過(guò)點(diǎn)向圓C引切線l,求切線l的方程;
(2)過(guò)點(diǎn)A作直線 交圓C于P,Q,且,求直線的斜率k;
(3)定點(diǎn)M,N在直線 上,對(duì)于圓C上任意一點(diǎn)R都滿足,試求M,N兩點(diǎn)的坐標(biāo).
【答案】(1)x=2或(2)(3).
【解析】解:(1)①當(dāng)直線l與x軸垂直時(shí),易知x=2符合題意;
②當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=k(x-2).
即kx-y-2k=0.
若直線l與圓C相切,則有,解得k=,
∴直線l:
故直線l的方程為x=2或
(2)設(shè),由 知點(diǎn)P是AQ的中點(diǎn),所以點(diǎn)Q的坐標(biāo)為 .
由于兩點(diǎn)P,Q均在圓C上,故 , ①
,即, ②
②—①得 , ③
由②③解得 或,
(其他方法類似給分)
(3)設(shè) ,則 ④
又 得 , ⑤
由④、⑤得 ,⑥
由于關(guān)于 的方程⑥有無(wú)數(shù)組解,所以,
解得
所以滿足條件的定點(diǎn)有兩組
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x﹣ ,且f(2)= .
(1)求實(shí)數(shù)a的值;
(2)判斷該函數(shù)的奇偶性;
(3)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知2Sn=3n+3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足anbn=log3an , 求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和為Sn , 若對(duì)于任意的正整數(shù)n都有Sn=2an﹣3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值;
(2)若時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的值;
(3若,對(duì)于區(qū)間上的任意兩個(gè)不相等的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)沙市物價(jià)監(jiān)督部門(mén)為調(diào)研某公司新開(kāi)發(fā)上市的一種產(chǎn)品銷(xiāo)售價(jià)格的合理性,對(duì)某公司的該產(chǎn)品的銷(xiāo)量與價(jià)格進(jìn)行了統(tǒng)計(jì)分析,得到如下數(shù)據(jù)和散點(diǎn)圖:
定價(jià) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷(xiāo)量 | 1150 | 643 | 424 | 262 | 165 | 86 |
14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
(參考數(shù)據(jù): ,
)
(1)根據(jù)散點(diǎn)圖判斷, 與和與哪一對(duì)具有的線性相關(guān)性較強(qiáng)(給出判斷即可,不必說(shuō)明理由)?
(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
(3)定價(jià)為多少元/ 時(shí),年銷(xiāo)售額的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線: ,曲線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)求曲線, 的極坐標(biāo)方程;
(Ⅱ)曲線: (為參數(shù), , )分別交, 于, 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知: 、 、 是同一平面上的三個(gè)向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 ﹣ 垂直,求 與 的夾角θ
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com