在數(shù)列中,,且數(shù)列是等比數(shù)列,則_____________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線C:x2=2py(p>0),拋物線上一點(diǎn)Q(m,$\frac{1}{2}$)到焦點(diǎn)的距離為1.
(Ⅰ)求拋物線C的方程
(Ⅱ)設(shè)過點(diǎn)M(0,2)的直線l與拋物線C交于A,B兩點(diǎn),且A點(diǎn)的橫坐標(biāo)為n(n∈N*
(。┯洝鰽OB的面積為f(n),求f(n)的表達(dá)式
(ⅱ)探究是否存在不同的點(diǎn)A,使對(duì)應(yīng)不同的△AOB的面積相等?若存在,求點(diǎn)A點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),且焦距為2$\sqrt{2}$,動(dòng)弦AB平行于x軸,且|F1A|+|F2A|=4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點(diǎn)P是橢圓C上異于點(diǎn)A,B的任意一點(diǎn),且直線PA,PB分別與y軸交于點(diǎn)M,N,若MF2,NF2的斜率分別為k1,k2,求k1+k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.對(duì)于定義域?yàn)镽的函數(shù)g(x),若存在正常數(shù)T,使得cosg(x)是以T為周期的函數(shù),則稱g(x)為余弦周期函數(shù),且稱T為其余弦周期.已知f(x)是以T為余弦周期的余弦周期函數(shù),其值域?yàn)镽.設(shè)f(x)單調(diào)遞增,f(0)=0,f(T)=4π.
(1)驗(yàn)證g(x)=x+sin$\frac{x}{3}$是以6π為周期的余弦周期函數(shù);
(2)設(shè)a<b,證明對(duì)任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;
(3)證明:“u0為方程cosf(x)=1在[0,T]上得解,”的充要條件是“u0+T為方程cosf(x)=1在區(qū)間[T,2T]上的解”,并證明對(duì)任意x∈[0,T],都有f(x+T)=f(x)+f(T).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆河南商丘第一高級(jí)中學(xué)年高三上理開學(xué)摸底數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在四棱錐中,底面,底面是直角梯形,

(1)在上確定一點(diǎn),使得平面,并求的值;

(2)在(1)條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆河南商丘第一高級(jí)中學(xué)年高三上理開學(xué)摸底數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖是某幾何體的三視圖,圖中圓的半徑均為1,且俯視圖中兩條半徑互相垂直,則該幾何體的體積為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆河南商丘第一高級(jí)中學(xué)年高三上理開學(xué)摸底數(shù)學(xué)試卷(解析版) 題型:選擇題

已知是虛數(shù)單位,若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,則實(shí)數(shù)的值可能是( )

A.-2 B.1

C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北邢臺(tái)市高一上學(xué)期月考一數(shù)學(xué)試卷(解析版) 題型:選擇題

若函數(shù),則函數(shù)與函數(shù)的圖象交點(diǎn)的個(gè)數(shù)為( )

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,B1B=B1A=BA=BC=2,∠B1BC=90°,D為AC的中點(diǎn),AB⊥B1D.
(Ⅰ)求證:平面ABC⊥平面ABB1A1;
(Ⅱ)求B到平面AB1D的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案