【題目】如圖,在三棱錐中,平面平面,、均為等邊三角形,為的中點(diǎn),點(diǎn)在上.
(1)求證:平面平面;
(2)若點(diǎn)是線段的中點(diǎn),求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)證明平面,再利用面面垂直的判定定理,即可證明結(jié)論;
(2)以,,所在的直線分別為,,軸建立空間直角坐標(biāo)系,設(shè),求出向量和面的一個(gè)法向量,再求兩向量夾角的余弦值,從而求得答案.
(1)因?yàn)?/span>、均為等邊三角形,為的中點(diǎn),
所以,.
又,所以平面,即平面.
又平面,所以平面平面;
(2)因?yàn)槠矫?/span>平面,平面平面,,平面,所以平面.
又平面,所以,所以,,兩兩互相垂直.
故以,,所在的直線分別為,,軸建立空間直角坐標(biāo)系如下圖所示:
不妨設(shè),則,.
則點(diǎn),,,,,.
則,,,
設(shè)平面的法向量為,則,
取,,,則,
,,,
,
則直線與平面所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:上的點(diǎn)到焦點(diǎn)的距離最小值為1.
(1)求的值;
(2)若點(diǎn)在曲線:上,且在曲線上存在三點(diǎn),,,使得四邊形為平行四邊形.求平行四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高二年級的第二學(xué)期,因某學(xué)科的任課教師王老師調(diào)動(dòng)工作,于是更換了另一名教師趙老師繼任.第二學(xué)期結(jié)束后從全學(xué)年的該門課的學(xué)生考試成績中用隨機(jī)抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如下:
學(xué)校秉持均衡發(fā)展、素質(zhì)教育的辦學(xué)理念,對教師的教學(xué)成績實(shí)行績效考核,績效考核方案規(guī)定:每個(gè)學(xué)期的學(xué)生成績中與其中位數(shù)相差在范圍內(nèi)(含)的為合格,此時(shí)相應(yīng)的給教師賦分為1分;與中位數(shù)之差大于10的為優(yōu)秀,此時(shí)相應(yīng)的給教師賦分為2分;與中位數(shù)之差小于-10的為不合格,此時(shí)相應(yīng)的給教師賦分為-1分.
(Ⅰ)問王老師和趙老師的教學(xué)績效考核平均成績哪個(gè)大?
(Ⅱ)是否有的把握認(rèn)為“學(xué)生成績?nèi)〉脙?yōu)秀與更換老師有關(guān)”.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購已經(jīng)逐漸融入了人們的生活,在家里不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會(huì)送到自己的家門口,所以選擇網(wǎng)購的人數(shù)在逐年增加.某網(wǎng)店統(tǒng)計(jì)了2014年一2018年五年來在該網(wǎng)店的購買人數(shù)(單位:人)各年份的數(shù)據(jù)如下表:
年份() | 1 | 2 | 3 | 4 | 5 |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與時(shí)間(單位:年)的關(guān)系,請通過計(jì)算相關(guān)系數(shù)加以說明,(若,則該線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式
參考數(shù)據(jù)
(2)該網(wǎng)店為了更好的設(shè)計(jì)2019年的“雙十一”網(wǎng)購活動(dòng)安排,統(tǒng)計(jì)了2018年“雙十一”期間8個(gè)不同地區(qū)的網(wǎng)購顧客用于網(wǎng)購的時(shí)間x(單位:小時(shí))作為樣本,得到下表
地區(qū) | ||||||||
時(shí)間 | 0.9 | 1.6 | 1.4 | 2.5 | 2.6 | 2.4 | 3.1 | 1.5 |
①求該樣本數(shù)據(jù)的平均數(shù);
②通過大量數(shù)據(jù)統(tǒng)計(jì)發(fā)現(xiàn),該活動(dòng)期間網(wǎng)購時(shí)間近似服從正態(tài)分布,如果預(yù)計(jì)2019年“雙十一”期間的網(wǎng)購人數(shù)大約為50000人,估計(jì)網(wǎng)購時(shí)間的人數(shù).
(附:若隨機(jī)變量服從正態(tài)分布則,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線有光學(xué)性質(zhì),即由其焦點(diǎn)射出的光線經(jīng)拋物線反射后,沿平行于拋物線對稱軸的方向射出,反之亦然.如圖所示,今有拋物線,一光源在點(diǎn)處,由其發(fā)出的光線沿平行于拋物線的對稱軸的方向射向拋物線上的點(diǎn),反射后,又射向拋物線上的點(diǎn),再反射后又沿平行于拋物線的對稱軸方向射出,途中遇到直線上的點(diǎn),再反射后又射回點(diǎn).設(shè),兩點(diǎn)的坐標(biāo)分別是,.
(1)證明:;
(2)若四邊形是平行四邊形,且點(diǎn)的坐標(biāo)為.求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2019年的冬令營考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下圖所示:
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | 35 | 0.350 | |
第3組 | 10 | 0.100 | |
第4組 | 20 | 0.200 | |
第5組 | 30 | 0.300 | |
合計(jì) | 100 | 1.00 |
(1)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(2)在(1)的前提下,高校決定在這6名學(xué)生中,隨機(jī)抽取2名學(xué)生接受A考官進(jìn)行面試,求第4組至少有一名學(xué)生被A考官測試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 .
(1)若是上的增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個(gè)極值點(diǎn),判斷函數(shù)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com