20.已知命題:若數(shù)列{an}(an>0)為等比數(shù)列,且am=a,an=b(m≠n,m,n∈N*),則am+n=$\root{n-m}{\frac{^{n}}{{a}^{m}}}$;現(xiàn)已知等差數(shù)列{bn},且bm=a,bn=b,(m≠n,m,n∈N*).若類(lèi)比上述結(jié)論,則可得到bm+n=(  )
A.$\frac{bn-am}{n-m}$B.$\frac{bm-an}{n-m}$C.$\frac{bn+am}{n+m}$D.$\frac{bm+an}{n+m}$

分析 首先根據(jù)等差數(shù)列和等比數(shù)列的性質(zhì)進(jìn)行類(lèi)比,等差數(shù)列中的bn-am可以類(lèi)比等比數(shù)列中的$\frac{^{n}}{{a}^{m}}$,等比數(shù)列中的am+n=$\root{n-m}{\frac{^{n}}{{a}^{m}}}$可以類(lèi)比等差數(shù)列中的$\frac{bn-am}{n-m}$,很快就能得到答案.

解答 解:等差數(shù)列中的bn和am可以類(lèi)比等比數(shù)列中的bn和am,
等差數(shù)列中的bn-am可以類(lèi)比等比數(shù)列中的$\frac{^{n}}{{a}^{m}}$,
等比數(shù)列中的am+n=$\root{n-m}{\frac{^{n}}{{a}^{m}}}$可以類(lèi)比等差數(shù)列中的$\frac{bn-am}{n-m}$.
故bm+n=$\frac{bn-am}{n-m}$,
故選:A.

點(diǎn)評(píng) 本題主要考查類(lèi)比推理的知識(shí)點(diǎn),解答本題的關(guān)鍵是熟練掌握等差數(shù)列和等比數(shù)列的性質(zhì),根據(jù)等比數(shù)列的所得到的結(jié)論,推導(dǎo)出等數(shù)數(shù)列的結(jié)論,本題比較簡(jiǎn)單.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知數(shù)列{an}滿足a1=1,an-an-1=2(n≥2),則數(shù)列的通項(xiàng)an=(  )
A.2n+1B.2nC.2n-1D.2(n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知橢圓$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{9}$=1與雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1有相同的焦點(diǎn),則橢圓的長(zhǎng)軸長(zhǎng)為( 。
A.16B.8C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在一個(gè)由三個(gè)元件A,B,C構(gòu)成的系統(tǒng)中,已知元件A,B,C正常工作的概率分別是$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且三個(gè)元件正常工作與否相互獨(dú)立,則這個(gè)系統(tǒng)正常工作的概率為:$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.將長(zhǎng)、寬分別為4πcm、2cm的矩形做為圓柱的側(cè)面卷成一個(gè)圓柱(以較長(zhǎng)邊為底面周長(zhǎng)),則此圓柱的全面積為16πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+3cosα\\ y=-3+3sinα\end{array}$(α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ-2ρsinθ-3=0.
(1)分別寫(xiě)出曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)若曲線C1與曲線C2交于P、Q兩點(diǎn),求△POQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知等差數(shù)列{an},滿足a4+a8=8,則此數(shù)列的前11項(xiàng)的和S11=( 。
A.11B.22C.33D.44

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=ex-ax-2
(1)求f(x)的單調(diào)區(qū)間;
(2)若a=1,k為整數(shù),且當(dāng)x>0時(shí),$\frac{k-x}{x+1}$f'(x)<1恒成立,其中f'(x)為f(x)的導(dǎo)函數(shù),求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合M={-2,0,2,4},N={x|x2<9},則M∩N=( 。
A.{0,2}B.{-2,0,2}C.{0,2,4}D.{-2,2}

查看答案和解析>>

同步練習(xí)冊(cè)答案