11.已知橢圓$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{9}$=1與雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1有相同的焦點,則橢圓的長軸長為( 。
A.16B.8C.4D.2

分析 由雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1可得焦點($±\sqrt{7}$,0).根據(jù)橢圓$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{9}$=1與雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1有相同的焦點,可得k-9=7,即可得出.

解答 解:由雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1可得c=$\sqrt{4+3}$=$\sqrt{7}$,可得焦點($±\sqrt{7}$,0).
∵橢圓$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{9}$=1與雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1有相同的焦點,∴k-9=7,解得k=16.
則橢圓的長軸長為2$\sqrt{16}$=8.
故選:B.

點評 本題考查了雙曲線與橢圓的標準方程及其性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)$f(x)=\frac{1}{2}{x^2}-2x+alnx$有兩個不同的極值點,則實數(shù)a的取值范圍是( 。
A.a>1B.-1<a<0C.a<1D.0<a<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.數(shù)列{an}的通項公式為${a_n}=-2{n^2}+λn(n∈{N^*},λ∈R)$,若{an}是遞減數(shù)列,則λ的取值范圍是( 。
A.(-∞,4)B.(-∞,4]C.(-∞,6)D.(-∞,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如果質點A按照規(guī)律s=5t2運動,則在t=3時的瞬時速度為30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)y=x2+2(m-1)x+3在區(qū)間(-∞,-2)上是單調遞減的,則m的取值范圍是( 。
A.m≤3B.m≥3C.m≤-3D.m≥-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.為調查我校學生的用電情況,學校后勤部門組織抽取了100間學生宿舍,某月用電量調查,發(fā)現(xiàn)每間宿舍用電量都在50度到350度之間,其頻率分布直方圖如圖所示.

(1)為降低能源損耗節(jié)約用電,規(guī)定:每間宿舍每月用電量不超過200度時,按每度0.5元收取費用;超過200度,超過部分按每度1元收取費用.以t表示某宿舍的用電量(單位:度),以y表示該宿舍的用電費用(單位:元),求y與t的函數(shù)關系式?
(2)求圖中月用電量在(200,250]度的宿舍有多少間?
(3)在直方圖中,試估計我校學生宿舍的月用電量中位數(shù)和平均數(shù).(精確到個位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設x1,x2是函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+2bx+c的兩個極值點.若x1∈(-2,-1),x2∈(-1,0),則2a+b的取值范圍是(2,7).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知命題:若數(shù)列{an}(an>0)為等比數(shù)列,且am=a,an=b(m≠n,m,n∈N*),則am+n=$\root{n-m}{\frac{^{n}}{{a}^{m}}}$;現(xiàn)已知等差數(shù)列{bn},且bm=a,bn=b,(m≠n,m,n∈N*).若類比上述結論,則可得到bm+n=( 。
A.$\frac{bn-am}{n-m}$B.$\frac{bm-an}{n-m}$C.$\frac{bn+am}{n+m}$D.$\frac{bm+an}{n+m}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(I)當a=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
( II)討論函數(shù)f(x)的單調性;
(III)當a=l時,對?m,n∈[-3,0],|f(m)-f(n)|≤M恒成立,求M的最小值.

查看答案和解析>>

同步練習冊答案