用特征性質(zhì)描述法表示:由北京一個城市構(gòu)成的集合.
考點:集合的表示法
專題:
分析:根據(jù)特征法描述幾何,由北京一個城市構(gòu)成的集合,表示城市是北京市,故求出答案.
解答: 解:根據(jù)特征法描述幾何,由北京一個城市構(gòu)成的集合,表示城市是北京市,
故答案為,集合A={城市|北京北京市}
點評:本題主要考查了集合的描述方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD,∠BAD=120°,PA=AB=2
2
,點N在線段PD上,且PN=kPD(0<k<1),平面BCN與PA相交于點M,
(Ⅰ)求證:AD∥MN;
(Ⅱ)試確定點N的位置. 使直線BN與平面PAD所成角的正切值為
6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:mx-2y+2m=0(m∈R)和橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),橢圓C的離心率為
2
2
,連接橢圓的四個頂點形成四邊形的面積為2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l與橢圓C交于A,B兩點,若以線段AB為直徑的圓過原點O,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在長方形ABCD中,AB=2BC,E為CD的中點.將△AED沿AE折起,使平面ADE⊥平面ABCE,連接DB、DC、EB.
(1)求證:CE∥平面ABD;
(2)求證:平面ABD⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=1,點E在PD上,且PE:ED=2:1.
(1)求二面角D-AC-E的余弦值;
(2)在棱PC上是否存在一點F,使得BF∥平面ACE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為2的正方體ABCD-A1B1C1D1中,O為正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=2PC.
(1)求直線AP與平面BCC1B1所成角的余弦值;
(2)求二面角P-AD1-D的平面角的余弦值;
(3)求點O到平面AD1P的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AD,DD1的中點,AB=BC=2,過A1,C1,B三點的平面截去長方體的一個角后.得到如圖所示的幾何體ABCD-A1B1C1D1,且這個幾何體的體積為
40
3

(1)求證:EF∥平面A1B1C1;
(2)求A1A的長;
(3)在線段BC1上是否存在點P,使直線A1P與C1D垂直,如果存在,求線段A1P的長,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,已知三點O(0,0),A(2,
π
2
),B(2
2
,
π
4
).
(Ⅰ)求經(jīng)過O,A,B的圓C的極坐標方程
(Ⅱ)以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,圓C2的參數(shù)方程
x=-1+acosθ
y=-1+asinθ
(θ是參數(shù)),若圓C1與圓C2相切,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的方程為
x2
4
+
y2
16
=1.
(Ⅰ)求橢圓C的長軸長及離心率;
(Ⅱ)已知M為橢圓C的左頂點,直線l過(1,0)且與橢圓C交于A,B兩點(不與M重合).求證:∠AMB>90°(或者證明△AMB是鈍角三角形)

查看答案和解析>>

同步練習冊答案