【題目】數(shù)列滿足,且數(shù)列的前項(xiàng)和為,已知數(shù)列的前項(xiàng)和為1,那么數(shù)列的首項(xiàng)________.

【答案】

【解析】

由數(shù)列分組求和可得a1+a2++a2018,由數(shù)列{bn}的前n項(xiàng)和以及數(shù)列的遞推式可得ana1的關(guān)系,求和解方程即可得到所求值.

數(shù)列{ann}的前2018項(xiàng)和為1,

即有(a1+a2++a2018)﹣(1+2++2018)=1,

可得a1+a2++a20181+1009×2019,

由數(shù)列{bn}的前n項(xiàng)和為n2,可得bn2n1,

a21+a1,a32a1a47a1,a5a1,

a69+a1,a72a1a815a1,a9a1,

…,

可得a1+a2++a2018=(1+2+7+9+2+15+17+2+23++4025+2+4031+a1+4033+a1

505+×505×504×8+2×504+504×7+×504×503×8+2a11+1009×2019,

解得a1

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)有3個(gè)不同零點(diǎn),則實(shí)數(shù)a的取值范圍____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù),).

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)證明:當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C:的離心率為,其右焦點(diǎn)到橢圓C外一點(diǎn)的距離為,不過(guò)原點(diǎn)O的直線l與橢圓C相交于A,B兩點(diǎn),且線段AB的長(zhǎng)度為2.

1求橢圓C的方程;

2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí)取得極值,求的值并判斷是極大值點(diǎn)還是極小值點(diǎn);

2)當(dāng)函數(shù)有兩個(gè)極值點(diǎn),恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中,,且.

(1)求證:是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

(2)數(shù)列中是否存在不同的三項(xiàng)按照一定順序重新排列后,構(gòu)成等差數(shù)列?若存在,求滿足條件的項(xiàng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,,,的中點(diǎn),點(diǎn)在平面內(nèi)的射影在線段上.

(1)求證:;

(2)若是正三角形,求三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,設(shè),且,記;

(1)設(shè),其中,試求的單調(diào)區(qū)間;

(2)試判斷弦的斜率的大小關(guān)系,并證明;

(3)證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元2020年春,我國(guó)湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會(huì)出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國(guó)科研人員,在研究新型冠狀病毒某種疫苗的過(guò)程中,利用小白鼠進(jìn)行科學(xué)試驗(yàn).為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對(duì)小白鼠進(jìn)行做接種試驗(yàn).該試驗(yàn)的設(shè)計(jì)為:①對(duì)參加試驗(yàn)的每只小白鼠每天接種一次;②連續(xù)接種三天為一個(gè)接種周期;③試驗(yàn)共進(jìn)行3個(gè)周期.已知每只小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無(wú)關(guān).

1)若某只小白鼠出現(xiàn)癥狀即對(duì)其終止試驗(yàn),求一只小白鼠至多能參加一個(gè)接種周期試驗(yàn)的概率;

2)若某只小白鼠在一個(gè)接種周期內(nèi)出現(xiàn)2次或3癥狀,則在這個(gè)接種周期結(jié)束后,對(duì)其終止試驗(yàn).設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案