【題目】近年空氣質(zhì)量逐步霧霾天氣現(xiàn)象增多,大氣污染危害加重,大氣污染可引起心悸,呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計(jì)

5

10

合計(jì)

50

已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;

(2)已知在患心肺疾病的10位女性中,有3位又患胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列、數(shù)學(xué)期望及方差,下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式,其中.

【答案】(1)詳見解析;(2)詳見解析.

【解析】試題分析:(1)根據(jù)在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為,可得患心肺疾病的人數(shù),即可得到列聯(lián)表;(2)

在患心肺疾病的10位女性中,有3位又患有胃病,記選出患胃病的女性人數(shù)為,則服從超幾何分布,即可得到的分布列、數(shù)學(xué)期望以及方差.

試題解析:(1)由于在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為,所以50人中患心肺疾病的人數(shù)為30人,故可將列聯(lián)表補(bǔ)充如下:

患心肺疾病

不患心肺疾病

合計(jì)

20

5

25

10

15

25

合計(jì)

30

20

50

.

故有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān).

(2)離散型隨機(jī)變量的所有可能取值為:

, ,

, .

所以的分布列如下:

.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 平面, 的中點(diǎn), , , .

(1)求證: ;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的極值;

2)若 , ,使得),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),直線的方程為.

(1)若直線是曲線的切線,求證: 對(duì)任意成立;

(2)若對(duì)任意恒成立,求實(shí)數(shù)是應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|lgx|.若a≠b且,f(a)=f(b),則a+b的取值范圍是(
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)棱底面,且側(cè)棱的長(zhǎng)是,點(diǎn)分別是的中點(diǎn).

(Ⅰ)證明: 平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下幾個(gè)結(jié)論中:①在△ABC中,有等式 ②在邊長(zhǎng)為1的正△ABC中一定有 =
③若向量 =(﹣3,2), =(0,﹣1),則向量 在向量 方向上的投影是﹣2
④與向量 =(﹣3,4)同方向的單位向量是 =(﹣ ,
⑤若a=40,b=20,B=25°,則滿足條件的△ABC僅有一個(gè);
其中正確結(jié)論的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是雙曲線的左右焦點(diǎn),以為直徑的圓與雙曲線的一條漸近線交于點(diǎn),與雙曲線交于點(diǎn),且均在第一象限,當(dāng)直線時(shí),雙曲線的離心率為,若函數(shù),則()

A. 1 B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若直線與曲線都只有兩個(gè)交點(diǎn),證明:這四個(gè)交點(diǎn)可以構(gòu)成一個(gè)平行四邊形,并計(jì)算該平行四邊形的面積;

(2)設(shè)函數(shù)在[1,2]上的值域?yàn)?/span>,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案