8.已知函數(shù).f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-3(x<0)}\\{0(x=0)}\\{-{x}^{2}+2x+3(x>0)}\end{array}\right.$
(1)畫出函數(shù)圖象.
(2)寫出函數(shù)的單調(diào)遞增區(qū)間并判斷奇偶性.

分析 (1)根據(jù)二次函數(shù)的性質(zhì)作圖;
(2)根據(jù)圖象判斷增區(qū)間和奇偶性.

解答 解:(1)作出函數(shù)圖象如圖所示:

(2)由函數(shù)圖象可知f(x)的增區(qū)間為(-1,0),(0,1),
由圖象可知f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,
∴f(x)是奇函數(shù).

點(diǎn)評(píng) 本題考查了分段函數(shù)的圖象,單調(diào)性與奇偶性判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的導(dǎo)函數(shù),即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,則f2017(x)=( 。
A.sinx+cosxB.sinx-cosxC.-sinx+cosxD.-sinx-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義在R上的偶函數(shù)f(x)滿足f(1-x)=f(1+x),當(dāng)x∈[1,2]時(shí),f(x)=lnx.則直線x-5y+3=0與曲線y=f(x)的交點(diǎn)個(gè)數(shù)為(參考數(shù)據(jù):ln2≈0.69,ln3≈1.10)( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中角A,B,C所對(duì)的邊分別為a,b,c,滿足ccosB+(b-2a)cosC=0.且c=2$\sqrt{3}$
(1)求角C的大小;
(2)求△ABC面積最大值,并判斷此時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)點(diǎn)M(x1,f(x1))和點(diǎn)N(x2,g(x2))分別是函數(shù)$f(x)={e^x}-\frac{1}{2}{x^2}$和g(x)=x-1圖象上的點(diǎn),且x1≥0,x2>0,x1≠x2,若不等式|x1-x2|≥|MN|≥k對(duì)任意x1≥0,x2>0,x1≠x2恒成立,則k的最大值為( 。
A.2B.$\frac{2-ln2}{2}$C.3D.$\frac{9-ln2}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)z=1-2i(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.復(fù)數(shù)z=m(m-1)+(m-1)i(m∈R).
(Ⅰ)實(shí)數(shù)m為何值時(shí),復(fù)數(shù)z為純虛數(shù);    
(Ⅱ)若m=2,計(jì)算復(fù)數(shù)$\overline{z}$-$\frac{z}{1+i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)a,b,c∈R且a>b,則下列選項(xiàng)中正確的是( 。
A.ac>bcB.a2>b2C.a3>b3D.$\frac{1}{a}>\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an},a4=28,且滿足$\frac{{a}_{n+1}+{a}_{n}-1}{{a}_{n+1}-{a}_{n}+1}$=n.
(1)求a1,a2,a3的值;
(2)試猜想數(shù)列{an}的通項(xiàng)公式,并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案