20.復(fù)數(shù)z=m(m-1)+(m-1)i(m∈R).
(Ⅰ)實數(shù)m為何值時,復(fù)數(shù)z為純虛數(shù);    
(Ⅱ)若m=2,計算復(fù)數(shù)$\overline{z}$-$\frac{z}{1+i}$.

分析 (1)根據(jù)純虛數(shù)的定義即可求出,
(2)先根據(jù)共軛復(fù)數(shù)的定義和復(fù)數(shù)的運算法則計算即可.

解答 解:(1)欲使z為純虛數(shù),則須m(m-1)=0且m-1≠0,所以得m=0;
(2)當(dāng)m=2時,z=2+i,$\overline{z}$=2-i,故所求式子等于$2-i-\frac{2+i}{1+i}$=$\frac{1}{2}-\frac{1}{2}i$.

點評 本題考查了復(fù)數(shù)的運算法則、純虛數(shù)的定義,考查了推理能力與計算能力,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知不等式ln(x+1)-1≤ax+b對一切x>-1都成立,則$\frac{a}$的最小值是( 。
A.e-1B.eC.1-e-3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)已知橢圓的兩焦點為F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),離心率e=$\frac{\sqrt{3}}{2}$.求此橢圓的方程;
(2)過點(3,-2)且與橢圓4x2+9y2=36有相同焦點的橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù).f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-3(x<0)}\\{0(x=0)}\\{-{x}^{2}+2x+3(x>0)}\end{array}\right.$
(1)畫出函數(shù)圖象.
(2)寫出函數(shù)的單調(diào)遞增區(qū)間并判斷奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在所有的兩位數(shù)中,個位數(shù)字大于十位數(shù)字的兩位數(shù)的個數(shù)為( 。
A.18B.36C.72D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=$\left\{\begin{array}{l}{2x,(x>0)}\\{f(x+1),(x<0)}\end{array}\right.$,則f(-$\frac{4}{3}$)+f($\frac{4}{3}$)等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.自2016年下半年起六安市區(qū)商品房價不斷上漲,為了調(diào)查研究六安城區(qū)居民對六安商品房價格承受情況,寒假期間小明在六安市區(qū)不同小區(qū)分別對50戶居民家庭進(jìn)行了抽查,并統(tǒng)計出這50戶家庭對商品房的承受價格(單位:元/平方),將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組(單位:元/平方),并作出頻率分布直方圖如圖:
(Ⅰ)試根據(jù)頻率分布直方圖估計出這50戶家庭對商品房的承受價格平均值(單位:元/平方);
(Ⅱ)為了作進(jìn)一步調(diào)查研究,小明準(zhǔn)備從承受能力超過4000元/平方的居民中隨機抽出2戶進(jìn)行再調(diào)查,設(shè)抽出承受能力超過8000元/平方的居民為ξ戶,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{2}{x-1}$(x∈(1,5])
(1)證明函數(shù)的單調(diào)性,
(2)求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)是定義在(-∞,+∞)上的奇函數(shù),若對于任意的實數(shù)x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時,f(x)=log2(x+1),則f(-2 017)+f(2 018)的值為( 。
A.-1B.-2C.2D.1

查看答案和解析>>

同步練習(xí)冊答案