化簡式子cos82°cos22°+sin82°sin22°的值是( 。
A、
1
2
B、
3
2
C、
3
3
D、
3
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:由條件利用兩角差的余弦公式求得式子cos82°cos22°+sin82°sin22°的值.
解答: 解:cos82°cos22°+sin82°sin22°=cos(82°-22°)=cos60°=
1
2

故選:A.
點評:本題主要考查兩角差的余弦公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖的程序框圖,若輸入的p=0.8,則輸出的n的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x,x≤0
f(x-3),x>0
,則f(5)的值等于(  )
A、
1
2
B、
3
2
C、8
D、24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1
3
x-lnx(x>0),那么函數(shù)y=f(x)( 。
A、在區(qū)間(
1
e
,1)內(nèi)無零點,在區(qū)間(1,e)內(nèi)有零點
B、在區(qū)間(
1
e
,1)內(nèi)有零點,在區(qū)間(1,e)內(nèi)無零點
C、在區(qū)間(
1
e
,1),(1,e)內(nèi)均有零點
D、在區(qū)間(
1
e
,1),(1,e)內(nèi)均無零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

OA
=
a
OB
=
b
,則∠AOB平分線上的向量
OM
為(  )
A、
a
|
a
|
+
b
|b|
B、λ(
a
|
a
|
+
b
|
b
|
),λ由
OM
確定
C、
a
+
b
|
a
+
b
|
D、λ(
|
b
|
a
+|
a
|
b
|
a
|+|
b
|
),λ由
OM
確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某單位有8個連在一起的車位,現(xiàn)有4輛不同型號的車需要停放,如果要求剩余的四個空位各不相連,則不同的停車方法有( 。
A、48種B、96種
C、120種D、144種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x、y滿足
y≥2|x|-1
y≤x+1
,那么目標函數(shù)z=x+y的最大值是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i是虛數(shù)單位,
i
1+i
的虛部等于( 。
A、0
B、-
1
2
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(3,
3
),O是坐標原點,點P(x,y)的坐標滿足
3
x-y≤0
x-
3
y+2≥0
y≥0
,設z為
OA
OP
上的投影,則z的取值范圍是(  )
A、[-3,3]
B、[-
3
,
3
]
C、[-
3
,3]
D、[-3,
3
]

查看答案和解析>>

同步練習冊答案