【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,E,F(xiàn),P,Q分別是BC,C1D1 , AD1 , BD的中點.

(1)求證:PQ∥平面DCC1D1
(2)求PQ的長;
(3)求證:EF∥平面BB1D1D.

【答案】
(1)證明:如圖所示,連接AC,CD1

∵P,Q分別為AD1、AC的中點,

∴PQ∥CD1,

∵CD1平面DCC1D1,PQ平面DCC1D1,

∴PQ∥平面DCC1D1


(2)解:由題意,可得:PQ= =
(3)證明:取CD中點G,連結(jié)EG、FG,

∵E,F(xiàn)分別是BC,C1D1的中點,

∴FG∥D1D,EG∥BD,

又FG∩EG=G,

∴平面FGE∥平面BB1D1D,

∵EF平面FGE,

∴EF∥平面BB1D1D


【解析】(1)連接AC,CD1 , 由P,Q分別為AD1、AC的中點,知PQ∥CD1 , 由此能夠證明PQ∥平面DCC1D1 . (2)利用(1)的結(jié)論,直接求解即可.(3)取CD中點G,連結(jié)EG、FG,由已知得平面FGE∥平面BB1D1D,由此能證明EF∥平面BB1D1D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)當 時,求曲線 在點 處的切線方程;
(2)當 時,判斷方程 實根個數(shù).
(3)若 時,不等式 恒成立,求實數(shù) m 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lg(x2﹣3x)的定義域為集合A,函數(shù) 的定義域為集合B(其中a∈R,且a>0).
(1)當a=1時,求集合B;
(2)若A∩B≠,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log2(x+2)與g(x)=(x﹣a)2+1,若對任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個內(nèi)角分別為A,B,C,且A≠
(1)化簡
(2)若角A滿足sinA+cosA=
(i)試判斷△ABC是銳角三角形還是鈍角三角形,并說明理由;
(ii)求tanA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學藝術(shù)專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;

(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下判斷正確的個數(shù)是( )

①相關(guān)系數(shù)值越小,變量之間的相關(guān)性越強.

②命題“存在”的否定是“不存在”.

③“”為真是“”為假的必要不充分條件.

④若回歸直線的斜率估計值是1.23,樣本點的中心為(4,5),則回歸直線方程是.

A. 4 B. 2 C. 3 D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)  上是增函數(shù),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x),g(x)都是定義在R上的函數(shù),且滿足以下條件:
①f(x)=axg(x)(a>0,a≠1);
②g(x)≠0;
③f(x)g'(x)>f'(x)g(x);
,則a=

查看答案和解析>>

同步練習冊答案