如圖,長方體ABCD-A1B1C1D1中,AA1=AB=2,AD=1,E,F(xiàn),G分別是DD1,AB,CC1的中點(diǎn),則異面直線A1E與GF所成角為
 
考點(diǎn):異面直線及其所成的角
專題:空間角
分析:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線A1E與GF所成角.
解答: 解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,
建立空間直角坐標(biāo)系,
A1(1,0,2),E(0,0,1),
G(0,2,1),F(xiàn)(1,1,0),
A1E
=(-1,0,-1),
GF
=(1,-1,-1),
設(shè)異面直線A1E與GF所成角為θ,
cosθ=|cos<
A1E
GF
>|=
|
A1E
GF
|
|
A1E
|•|
GF
|
=0,
∴異面直線A1E與GF所成角為90°.
故答案為:90°.
點(diǎn)評:本題考查空間點(diǎn)、線、面的位置關(guān)系及學(xué)生的空間想象能力、求異面直線角的能力,解題時要注意向量法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知 f(x)=
x2-4x+3,x≤0
-x2-2x+3,x>0
,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=sin(2x+φ)在(
π
4
π
3
)上單調(diào)遞增,其中φ∈(π,2π),則φ的取值范圍為( 。
A、[
7
6
π,2π)
B、(π,
11
6
π]
C、[
7
6
π,
11
6
π]
D、[
11
6
π,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,已知M是棱AB的中點(diǎn),求C1M與平面BCD1A1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-y2=1,點(diǎn)A是它的左頂點(diǎn),c是它的半焦距,點(diǎn)B(c2,0),點(diǎn)P是雙曲線右支上的點(diǎn),且滿足AP⊥BP,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖一是火力發(fā)電廠煙囪示意圖.它是雙曲線繞其一條對稱軸旋轉(zhuǎn)一周形成的幾何體,煙囪最細(xì)處的直徑為10m,最下端的直徑為12m,最細(xì)處離地面6m,煙囪高14m,試求該煙囪占有空間的大。ň_到0.1m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg(|x|+1)-sin2x的零點(diǎn)個數(shù)為( 。
A、9B、10C、11D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大學(xué)的一個社會實(shí)踐調(diào)查小組,在對大學(xué)生的良好“光盤習(xí)慣”的調(diào)査中,隨機(jī)發(fā)放了l20份問巻.對收回的l00份有效問卷進(jìn)行統(tǒng)計,得到如下2x2列聯(lián)表:
做不到光盤能做到光盤合計
451055
301545
合計7525100
(1)現(xiàn)已按是否能做到光盤分層從45份女生問卷中抽取了9份問卷,若從這9份問卷中隨機(jī)抽取4份,并記其中能做到光盤的問卷的份數(shù)為ξ,試求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望
(2)如果認(rèn)為良好“光盤習(xí)慣”與性別有關(guān)犯錯誤的概率不超過P,那么根據(jù)臨界值表最精確的P的值應(yīng)為多少?請說明理由.
附:獨(dú)立性檢驗統(tǒng)計量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d,
獨(dú)立性檢驗臨界表:
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8405.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x3+4
(1)求曲線在P(2,12)處的切線方程;
(2)求曲線過點(diǎn)P(2,4)的切線方程;
(3)求斜率為1的切線方程.

查看答案和解析>>

同步練習(xí)冊答案