【題目】已知拋物線:,焦點,如果存在過點的直線與拋物線交于不同的兩點.,使得,則稱點為拋物線的“分點”.
(1)如果,直線:,求的值;
(2)如果為拋物線的“分點”,求直線的方程;
(3)證明點不是拋物線的“2分點”;
(4)如果是拋物線的“2分點”,求的取值范圍.
【答案】(1);(2);(3)證明見解析;(4)
【解析】
(1)聯立求得點,點的坐標,從而可求得三角形面積,進而求得;
(2)由可得,則,聯立直線:與拋物線,由韋達定理可得與的關系,進而求得,從而得到直線方程;
(3)假設成立,設直線:,利用點到直線距離公式求得面積,整理可得,將直線與拋物線聯立可得,故可證明假設不成立;
(4)設直線:,聯立直線與拋物線得,則根據韋達定理可得與的關系,由也可以得到與的關系,二者結合可得,進而求解即可
解:(1)聯立得,則,,
所以,
,
所以,
即
(2)設.,不妨設,,設直線:,
因為,
所以,得,
將代入得,
所以,則,所以,
所以直線:,即
(3)設直線:(),代入整理得,,
由韋達定理得,所以,
則點到直線:的距離,
由得,解得,
又(),,消得,
將代入化簡得,解得,不成立,
所以點不是拋物線的“2分點”.
(4)設,,不妨設,,
設直線:,
將直線代入得,
則,
由,得,解得,
所以,消得,解得.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線的傾斜角為,且經過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數方程和曲線C的直角坐標方程;
(Ⅱ)設直線與曲線C交于P,Q兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,將橢圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼囊话,得曲線C,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為.
寫出曲線C的普通方程和直線l的直角坐標方程;
已知點且直線l與曲線C交于A、B兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線C:左、右焦點分別為,,左、右頂點分別為,B為虛軸的上頂點,若直線上存在兩點使得,且過雙曲線的右焦點作斜率為1的直線與雙曲線的左、右兩支各有一個交點,則雙曲線離心率的范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線與平面相交但不垂直,則下列說法中正確的是( )
A.在平面內沒有直線與直線垂直;
B.在平面內有且只有一條直線與直線垂直;
C.在平面內有無數條直線與直線垂直;
D.在平面內存在兩條相交直線與直線垂直.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E的方程為y2=1,其左焦點和右焦點分別為F1,F2,P是橢圓E上位于第一象限的一點
(1)若三角形PF1F2的面積為,求點P的坐標;
(2)設A(1,0),記線段PA的長度為d,求d的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程是(t是參數),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程是。
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若兩曲線交點為,求
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,①已知點,,為曲線上任一點,到點的距離和到點的距離的比值為2;②圓經過,,且圓心在直線上.從①②中任選一個條件.
(1)求曲線的方程;
(2)若直線被曲線截得弦長為2,求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com