精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線,焦點,如果存在過點的直線與拋物線交于不同的兩點.,使得,則稱點為拋物線分點

1)如果,直線,求的值;

2)如果為拋物線分點,求直線的方程;

3)證明點不是拋物線“2分點

4)如果是拋物線的“2分點,求的取值范圍.

【答案】1;(2;(3)證明見解析;(4

【解析】

1)聯立求得點,的坐標,從而可求得三角形面積,進而求得;

2)由可得,,聯立直線與拋物線,由韋達定理可得的關系,進而求得,從而得到直線方程;

3)假設成立,設直線,利用點到直線距離公式求得面積,整理可得,將直線與拋物線聯立可得,故可證明假設不成立;

4)設直線,聯立直線與拋物線得,則根據韋達定理可得的關系,也可以得到的關系,二者結合可得,進而求解即可

解:(1)聯立,則,,

所以,

,

所以,

2)設.,不妨設,,設直線,

因為,

所以,得,

代入,

所以,則,所以,

所以直線,即

3)設直線),代入整理得,,

由韋達定理得,所以,

則點到直線的距離,

,解得,

),,消,

代入化簡得,解得,不成立,

所以點不是拋物線“2分點

4)設,,不妨設,,

設直線,

將直線代入,

,

,得,解得,

所以,消,解得

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的傾斜角為,且經過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.

(Ⅰ)求出直線的參數方程和曲線C的直角坐標方程;

(Ⅱ)設直線與曲線C交于P,Q兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,將橢圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼囊话,得曲線C,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為

寫出曲線C的普通方程和直線l的直角坐標方程;

已知點且直線l與曲線C交于A、B兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】雙曲線C左、右焦點分別為,,左、右頂點分別為,B為虛軸的上頂點,若直線上存在兩點使得,且過雙曲線的右焦點作斜率為1的直線與雙曲線的左、右兩支各有一個交點,則雙曲線離心率的范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設直線與平面相交但不垂直,則下列說法中正確的是( )

A.在平面內沒有直線與直線垂直;

B.在平面內有且只有一條直線與直線垂直;

C.在平面內有無數條直線與直線垂直;

D.在平面內存在兩條相交直線與直線垂直.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓E的方程為y21,其左焦點和右焦點分別為F1,F2,P是橢圓E上位于第一象限的一點

1)若三角形PF1F2的面積為,求點P的坐標;

2)設A10),記線段PA的長度為d,求d的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在幾何體中,四邊形是矩形,平面,,分別是線段的中點.

(Ⅰ)求證:平面;

(Ⅱ)求平面與平面所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程是t是參數),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程是。

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若兩曲線交點為,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,①已知點,為曲線上任一點,到點的距離和到點的距離的比值為2;②圓經過,且圓心在直線.從①②中任選一個條件.

1)求曲線的方程;

2)若直線被曲線截得弦長為2,求的值.

查看答案和解析>>

同步練習冊答案