9.等差數(shù)列{an}的前n項(xiàng)和為Sn,S7-S5=24,a3=5,則S7=( 。
A.25B.49C.15D.40

分析 利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d.
由等差數(shù)列的性質(zhì)可得:S7-S5=24=a6+a7,a3=5,
∴2a1+11d=24,a1+2d=5,解得a1=1,d=2,
則S7=7+$\frac{7×6}{2}$×2=49.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖在一個(gè)60°的二面角的棱上有兩個(gè)點(diǎn)A、B,線段AC、BD分別在這個(gè)二面角的兩個(gè)面內(nèi),并且都垂直于棱AB,且AB=AC=1,BD=2,則CD的長(zhǎng)為(  )
A.2B.$\sqrt{5}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知|z|=2+z+3i,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列4個(gè)命題是真命題的個(gè)數(shù)是( 。
①“若x2+y2=0,則x、y均為零”的逆命題
②“全等三角形的面積相等”的否命題
③“若A∩B=A,則A⊆B”的逆否命題
④“末位數(shù)字不是零的數(shù)可被5整除”的逆否命題.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$\vec a=(x,4),\vec b=(3,2)$,$\vec a∥\vec b,則x$=( 。
A.-6B.$-\frac{3}{8}$C.6D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知關(guān)于x的不等式kx2-2x+6k<0(k≠0)
(1)若不等式的解集是{x|x<-3或x>-2},求k的值;
(2)若不等式的解集是R,求k的取值范圍;
(3)若不等式的解集為∅,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示,在正方體ABCD-A1B1C1D1中,E、F分別是AB、AD的中點(diǎn),則異面直線B1C與EF所成的角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.我國(guó)南北朝時(shí)期數(shù)學(xué)家、天文學(xué)家祖暅提出了著名的祖暅原理:“冪勢(shì)既同,則積不容異”.“勢(shì)”即是高,“冪”即是面積.意思是說(shuō)如果兩等高的幾何體在同高處截得兩幾何體的截面積相等,那么這兩個(gè)幾何體的體積相等.已知某不規(guī)則幾何體與如圖所對(duì)應(yīng)的幾何體滿足:“冪勢(shì)同”,則該不規(guī)則幾何體的體積為(圖中的網(wǎng)格紙中的小正方形的邊長(zhǎng)為1)( 。
A.4B.8C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某景區(qū)欲建兩條圓形觀景步道M1,M2(寬度忽略不計(jì)),如圖所示,已知AB⊥AC,AB=AC=AD=60(單位:米),要求圓M與AB,AD分別相切于點(diǎn)B,D,圓M2與AC,AD分別相切于點(diǎn)C,D.
(1)若$∠BAD=\frac{π}{3}$,求圓M1,M2的半徑(結(jié)果精確到0.1米)
(2)若觀景步道M1,M2的造價(jià)分別為每米0.8千元與每米0.9千元,則當(dāng)∠BAD多大時(shí),總造價(jià)最低?最低總造價(jià)是多少?(結(jié)果分別精確到0.1°和0.1千元)

查看答案和解析>>

同步練習(xí)冊(cè)答案