分析 (1)利用切線的性質(zhì)即可得出圓的半徑;
(2)設(shè)∠BAD=2α,則總造價y=0.8•2π•60tanα+0.9•2π•60tan(45°-α),化簡,令1+tanα=x換元,利用基本不等式得出最值.
解答 解:(1)連結(jié)M1M2,AM1,AM2,
∵圓M1與AB,AD相切于B,D,圓M2與AC,AD分別相切于點C,D,
∴M1,M2⊥AD,∠M1AD=$\frac{1}{2}$∠BAD=$\frac{π}{6}$,∠M2AD=$\frac{π}{12}$,
∴M1B=ABtan∠M1AB=60×$\frac{\sqrt{3}}{3}$=20$\sqrt{3}$≈34.6(米),
∵tan$\frac{π}{6}$=$\frac{2tan\frac{π}{12}}{1-ta{n}^{2}\frac{π}{12}}$=$\frac{\sqrt{3}}{3}$,∴tan$\frac{π}{12}$=2-$\sqrt{3}$,
同理可得:M2D=60×tan$\frac{π}{12}$=60(2-$\sqrt{3}$)≈16.1(米).
(2)設(shè)∠BAD=2α(0<α<$\frac{π}{4}$),由(1)可知圓M1的半徑為60tanα,圓M2的半徑為60tan(45°-α),
設(shè)觀景步道總造價為y千元,則y=0.8•2π•60tanα+0.9•2π•60tan(45°-α)=96πtanα+108π•$\frac{1-tanα}{1+tanα}$,
設(shè)1+tanα=x,則tanα=x-1,且1<x<2.
∴y=96π(x-1)+108π($\frac{2}{x}-1$)=12π•(8x+$\frac{18}{x}$-17)≥84π≈263.8,
當(dāng)且僅當(dāng)8x=$\frac{18}{x}$即x=$\frac{3}{2}$時取等號,
當(dāng)x=$\frac{3}{2}$時,tanα=$\frac{1}{2}$,∴α≈26.6°,2α≈53.2°.
∴當(dāng)∠BAD為53.2°時,觀景步道造價最低,最低造價為263.8千元.
點評 本題考查直線與圓的位置關(guān)系,考查基本不等式的運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25 | B. | 49 | C. | 15 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}或\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
男 | 女 | 總計 | |
愛好 | 10 | 40 | 50 |
不愛好 | 20 | 30 | 50 |
總計 | 30 | 70 | 100 |
A. | 0.25% | B. | 2.5% | C. | 97.5% | D. | 99.75% |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com