15.已知a=log23,則4a+4-a=$\frac{82}{9}$.

分析 由a=log23,可得4a=${2}^{2lo{g}_{2}3}$=9,4-a=$\frac{1}{9}$.即可得出.

解答 解:∵a=log23,∴4a=${2}^{2lo{g}_{2}3}$=9,4-a=$\frac{1}{9}$.
則4a+4-a=$\frac{82}{9}$,
故答案為:$\frac{82}{9}$.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的運(yùn)算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.①$y=2{x^2}+\frac{4}{x}$的最小值為6;
②當(dāng)a>0,b>0時,$\frac{1}{a}+\frac{1}+2\sqrt{ab}≥4$;
③$y=x{(1-2x)^2},(0<x<\frac{1}{2})$最大值為$\frac{2}{27}$;
④當(dāng)且僅當(dāng)a,b均為正數(shù)時,$\frac{a}+\frac{a}≥2$恒成立.
以上命題是真命題的是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f (x)=${e^x}-\frac{1}{x}$的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一直線 l 過直線 l1:2x-y=1 和直線 l2:x+2y=3 的交點 P,且與直線 l3:x-y+1=0 垂直.
(1)求直線 l 的方程;
(2)若直線 l 與圓 C:(x-a)2+y 2=8 (a>0)相切,求 a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題正確的是( 。
A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行
B.若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行
C.若一條直線和兩個相交平面都平行,則這兩條直線與這兩個平面的交線平行
D.若兩個平面都垂直于第三個平面,則這兩個平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C:x2+y2+4x-4ay+4a2+1=0,直線l:ax+y+2a=0.
(1)當(dāng)$a=\frac{3}{2}$時,直線l與圓C相較于A,B兩點,求弦AB的長;
(2)若a>0且直線l與圓C相切,求圓C關(guān)于直線l的對稱圓C'的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知拋物線y2=16x的焦點恰好是雙曲線$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點,則雙曲線的漸近線方程為y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{1}{3}$x3-mx2+x+2有兩個極值點,則m的取值范圍是(  )
A.(-1,1)B.[-1,1]C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案