【題目】棱長為1的正方體中,點、分別在線段上運動(不包括線段端點),且.以下結論:①;②若點分別為線段、的中點,則由線確定的平面在正方體上的截面為等邊三角形;③四面體的體積的最大值為;④直線與直線的夾角為定值.其中正確的結論為______.(填序號)

【答案】① ② ③

【解析】

①作NEBC,MFAB,垂足分別為EF,可得四邊形MNEF是矩形,可得MNFE,利用AA1⊥面AC,可得結論成立;

②截面為AB1C,為等邊三角形,故正確.

③設,則dMBCN=,故③成立;

④設,當接近于0時,直線與直線的夾角接近于,當接近于1時,夾角接近于,故④不正確;

①作NEBC,MFAB,垂足分別為E,F,∵AMBN,∴NEMF,∴四邊形MNEF是矩形,∴MNFE,∵AA1⊥面AC,EFAC,∴AA1EF,∴AA1MN,故①正確;

②點M、N分別為線段AB1、BC1的中點,則由線MNAB1確定的平面在正方體ABCDA1B1C1D1 上的截面為AB1C,為等邊三角形,故②正確.

③設,則dMBCN,又AM=BN=,

=,dMBCN =,∴dMBCN=,當且僅當時取得最大值,故③成立;

④設,當接近于0時,直線與直線的夾角近似于直線和直線的夾角,接近于,當接近于1時,直線與直線的夾角近似于直線和直線的夾角,接近于,故④不正確;

綜上可知,正確的結論為①②③

故答案為:①②③

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了讓學生更多的了解數(shù)學史知識,某中學高二年級舉辦了一次追尋先哲的足跡,傾聽數(shù)學的聲音的數(shù)學史知識競賽活動,共有800名學生參加了這次競賽,為了解本次競賽的成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,統(tǒng)計結果見下表.請你根據(jù)頻率分布表解答下列問題:

序號

分組(分數(shù))

組中值

頻數(shù)(人數(shù))

頻率

1

65

0.12

2

75

20

3

85

0.24

4

95

合計

50

1

1)填充頻率分布表中的空格;

2)規(guī)定成績不低于85分的同學能獲獎,請估計在參加的800名學生中大概有多少名同學獲獎?

3)在上述統(tǒng)計數(shù)據(jù)的分析中有一項計算見算法流程圖,求輸出的的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1)求的定義域;并證明是定義域上的奇函數(shù);

2)判斷在定義域上的單調性(無需證明);

3)求使不等式解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人輪流投籃,每人每次投一次籃,先投中者獲勝.投籃進行到有人獲勝或每人都已投球3次時結束.設甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響現(xiàn)由甲先投.

1)求甲獲勝的概率;

2)求投籃結束時甲的投籃次數(shù)X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以原點為極點,以軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線 的極坐標方程為:.

(I)若曲線,參數(shù)方程為:(為參數(shù)),求曲線的直角坐標方程和曲線的普通方程

(Ⅱ)若曲線,參數(shù)方程為 (為參數(shù)),,且曲線,與曲線交點分別為,求的取值范圍,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓,其長軸是短軸的兩倍,以某短軸頂點和長軸頂點為端點的線段作為直徑的圓的周長為,直線與橢圓交于,兩點.

(1)求橢圓的方程;

(2)過點作直線的垂線,垂足為.若,求點的軌跡方程;

(3)設直線,的斜率分別為,,其中.設的面積為.以為直徑的圓的面積分別為,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)若,討論的單調性

(2)若上有兩個零點,的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016高考新課標II,理15)有三張卡片,分別寫有12,1323.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱的各條棱長均相等, 的中點, 分別是線段和線段上的動點(含端點),且滿足.當運動時,下列結論中不正確的是( )

A. 平面平面 B. 三棱錐的體積為定值

C. 可能為直角三角形 D. 平面與平面所成的銳二面角范圍為

查看答案和解析>>

同步練習冊答案