已知函數(shù)f(x)是R上的單調(diào)遞增函數(shù),若A(-2,-4),B(0,4)是其圖象上的兩點,則不等式|f(x-2)|≤4的解集是
 
考點:絕對值不等式的解法
專題:不等式的解法及應用
分析:不等式即-4≤f(x-2)≤4,結合題意利用函數(shù)的單調(diào)性可得-2≤x-2≤0,由此求得不等式的解集.
解答: 解:由于函數(shù)f(x)是R上的單調(diào)遞增函數(shù),若A(-2,-4),B(0,4)是其圖象上的兩點,
則由不等式|f(x-2)|≤4,即-4≤f(x-2)≤4,可得-2≤x-2≤0,即 0≤x≤2,
故答案為:[0,2].
點評:本題主要考查函數(shù)的單調(diào)性的應用,絕對值不等式的解法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

不等式|
x+1
x-1
|<x的解集是( 。
A、{x|0x<1}∪{x|x>1}
B、{x|1-
2
<x<1}∪{x|x>1+
2
}
C、{x|-1x<0}
D、{x|x>1+
2
}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足約束條件
x+2y≤4
y≥0
x+y≥1
,則z=2x-y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知以點P到兩定點M(-1,0)、N(1,0)距離的比為
2
,點N到直線PM的距離為1,求直線PN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前項和為Sn=4-an-
1
2n-2
,
(Ⅰ)求an+1與an的關系;
(Ⅱ)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、c,若2c2=2a2+2b2+ab,則△ABC是( 。
A、等邊三角形
B、銳角三角形
C、直角三角形
D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果橢圓方程是
x2
16
+
y2
12
=1,那么焦距是( 。
A、2
B、2
3
C、4
D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1,x2∈D,有f(x1x2)=f(x1)+f(x2),且當x>1時,f(x)>0.
(Ⅰ)判斷f(x)的奇偶性并證明;
(Ⅱ)求證f(x)在(0,+∞)上是增函數(shù);
(Ⅲ)如果f(4)=1,f(3x+1)+f(2x-6)≤3,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a1,a2,a3,a4成等差數(shù)列,且a1,a4為方程2x2-5x+2=0的兩個根,則a2+a3等于( 。
A、-1
B、1
C、-
5
2
D、
5
2

查看答案和解析>>

同步練習冊答案