下列函數(shù)中,在(0,+∞)上單調(diào)遞減,并且是偶函數(shù)的是( 。
A、y=x2
B、y=-x3
C、y=-lg|x|
D、y=2x
考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的奇偶性和單調(diào)性加以判定.
解答: 解:四個函數(shù)中,A,C是偶函數(shù),B是奇函數(shù),D是非奇非偶函數(shù),
又A,y=x2在(0,+∞)內(nèi)單調(diào)遞增,
故選:C.
點評:本題主要考查函數(shù)的奇偶性和單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式kx2-2kx+1>0的解集為R,則實數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從集合{1,2,3,4,5}中隨機抽取一個數(shù)a,從集合{1,3}中隨機抽取一個數(shù)b,則時間“a≥b”發(fā)生的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(
π
4
,
π
2
),a=log3sinα,b=2sinα,c=2cosα( 。
A、c>a>b
B、b>a>c
C、a>c>b
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過點A(-3,1)且方向向量為
a
=(2,-5)的光線經(jīng)過直線y=-2反射后通過拋物線y2=2px的焦點,則p的值為( 。
A、2B、-2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

六棱柱ABCDEF-A′B′C′D′E′F′的底面是正六邊形,側(cè)棱垂直于底面,且側(cè)棱長等于底面邊長,則直線B′D′與EF′所成角的余弦值為( 。
A、
6
4
B、
6
3
C、
1
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論正確的是( 。
A、命題“如果p2+q2=2,則p+q≤2”的否命題是“如果p+q>2,則p2+q2≠2”
B、命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則p∨q為假
C、“若am2<bm2,則a<b”的逆命題為真命題
D、設(shè)0<x<
π
2
,則“xsin2x<1”是“xsinx<1”的必要而不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(3+
3
i)•z=4
3
(i是虛數(shù)單位),那么復(fù)數(shù)z等于( 。
A、
3
+i
B、
3
-i
C、3+
3
i
D、3-
3
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax
1+x2
(a>0)的圖象為曲線C.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若曲線C的切線的斜率k的最小值為-1,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案