【題目】定義集合與集合之差是由所有屬于且不屬于的元素組成的集合,記作 .已知集合

)若集合,寫(xiě)出集合的所有元素;

)從集合選出10個(gè)元素由小到大構(gòu)成等差數(shù)列,其中公差的最大值和最小值分別是多少?公差為的等差數(shù)列各有多少個(gè)?

)設(shè)集合,且集合中含有10個(gè)元素,證明:集合中必有10個(gè)元素組成等差數(shù)列.

【答案】2,4,816,3264;(只有1個(gè),d=1有91個(gè);()見(jiàn)解析

【解析】

(Ⅰ)根據(jù)題意,分析集合T的元素,結(jié)合MN的含義分析可得答案;(Ⅱ)根據(jù)題意,由等差數(shù)列的性質(zhì)分析公差的最大、最小值,據(jù)此分析等差數(shù)列的數(shù)目,相加即可得答案;(Ⅲ)根據(jù)題意,將集合S中元素列表,據(jù)此分析集合集合SA中的元素,由反證法分析可得結(jié)論.

)根據(jù)題意,集合 , ;

;

則集合 的所有元素是: 2,4,8,16,32,64

)當(dāng)首項(xiàng)是1,末項(xiàng)是100時(shí),公差最大為11,即

這樣的數(shù)列只有1個(gè):112,2334,45,56677889,100;

當(dāng)選取的10個(gè)數(shù)是連續(xù)自然數(shù)時(shí),公差最小為1,即d=1

這樣的數(shù)列首項(xiàng)可以是1,2,3,…,91中的任何一個(gè),

因此共有91個(gè)公差為1的等差數(shù)列;

)將集合中元素列表如下:

1

2

3

10

11

12

13

20

21

22

23

30

91

92

93

100

表中各行或各列的十個(gè)數(shù)分別構(gòu)成等差數(shù)列.

假設(shè)存在含有10個(gè)元素的集合,使得 中不含10個(gè)元素組成的等差數(shù)列.

顯然每連續(xù)10個(gè)元素中必有集合中的唯一一個(gè)元素,即表的每行、每列中必有集合中的唯一一個(gè)元素.

記表中第行第列的數(shù)為

若第 行中集合A的唯一元素為 ,則第行中, ,… 中必有集合A中元素.

若第行的第一個(gè)數(shù)在集合中,則此行余下九個(gè)數(shù)和下一行第一個(gè)數(shù)可以組成等差數(shù)列,與假設(shè)矛盾.

因此,第一列中集合的唯一元素只可能在第十行.

同理,若第行的第二個(gè)數(shù)在集合中,則此行余下八個(gè)數(shù)和下一行前兩個(gè)數(shù)可以組成等差數(shù)列,與假設(shè)矛盾.

因此,第二列中集合的唯一元素只可能在第九行.

依此類推,得

此時(shí),另一條對(duì)角線上的十個(gè)元素構(gòu)成等差數(shù)列,與假設(shè)矛盾.

綜上,原命題成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)如圖,過(guò)定點(diǎn)的直線交橢圓兩點(diǎn),連接并延長(zhǎng)交,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】0,12,3,4,5這六個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的四位數(shù).

(1)在組成的四位數(shù)中,求所有偶數(shù)的個(gè)數(shù);

2)在組成的四位數(shù)中,求比2430大的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的離心率 ,直線 被以橢圓 的短軸為直徑的圓截得的弦長(zhǎng)為 .

(1)求橢圓 的方程;

(2)過(guò)點(diǎn) 的直線 交橢圓于 , 兩個(gè)不同的點(diǎn),且 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一枚質(zhì)地均勻的硬幣向上拋擲三次,下列兩個(gè)事件中,是對(duì)立事件的是(

A.事件恰有兩次正面向上,事件恰有兩次反面向上

B.事件恰有兩次正面向上,事件恰有一次正面向上

C.事件至少有一次正面向上,事件至多一次正面向上

D.事件至少有一次正面向上,事件恰有三次反面向上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別是,,且橢圓經(jīng)過(guò)點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)取何值時(shí),直線與橢圓有兩個(gè)公共點(diǎn);只有一個(gè)公共點(diǎn);沒(méi)有公共點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,離心率為,過(guò)焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點(diǎn)M(0,-1),直線l經(jīng)過(guò)點(diǎn)N(2,1)且與橢圓C相交于A,B兩點(diǎn)(異于點(diǎn)M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形中,,邊上異于端點(diǎn)的動(dòng)點(diǎn),,將矩形沿折疊至處,使面(如圖2).點(diǎn)滿足,.

(1)證明:

(2)設(shè),當(dāng)為何值時(shí),四面體的體積最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案