【題目】已知函數(shù) 為奇函數(shù)
(1)求 的值.
(2)探究 的單調(diào)性,并證明你的結(jié)論.
(3)求滿足 的范圍.

【答案】
(1)解:若f(x)為R上的奇函數(shù),則f(0)=0,解得a=1,驗證如下:
當(dāng)a=1時, ,
所以, f(x)為奇函數(shù)
(2)解: R上的單調(diào)遞增函數(shù),證明過程如下:
任取 ,

,
因為 < ,所以 <
所以,f(x1)f(x2)<0,
f(x)為R上的增函數(shù);
(3)解:此時,不等式 ,可化為: ,
又∵ R上的增函數(shù),∴x< ,
解得,
故實數(shù)x的取值范圍為 .
【解析】本題考查了函數(shù)奇偶性的性質(zhì),函數(shù)單調(diào)性的判斷,定義是解決問題的根本,是個中檔題.證明函數(shù)的單調(diào)性用定義法的步驟:①取值;②作差;③變形;④確定符號;⑤下結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos22x﹣2,給出下列命題:
β∈R,f(x+β)為奇函數(shù);
α∈(0, ),f(x)=f(x+2α)對x∈R恒成立;
x1 , x2∈R,若|f(x1)﹣f(x2)|=2,則|x1﹣x2|的最小值為 ;
x1 , x2∈R,若f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z).其中的真命題有( )
A.①②
B.③④
C.②③
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 .求:
(1)曲線C上橫坐標(biāo)為1的點處的切線方程;
(2)(1)中的切線與曲線C是否還有其他的公共點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AC=6,cosB= ,C=
(1)求AB的長;
(2)求cos(A﹣ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列表:

喜愛打籃球

不喜愛打籃球

合計

男生

20

5

25

女生

10

15

25

合計

30

20

50


(1)用分層抽樣的方法在喜歡打藍(lán)球的學(xué)生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.
(3)為了研究喜歡打藍(lán)球是否與性別有關(guān),計算出K2 , 你有多大的把握認(rèn)為是否喜歡打藍(lán)球與性別有關(guān)? 附:
下面的臨界值表供參考:

p(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinx,x∈(0,2π),點P(x,y)是函數(shù)f(x)圖象上任一點,其中0(0,0),A(2π,0),記△OAP的面積為g(x),則g′(x)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣1,﹣1].
(1)求m的值;
(2)若a,b,c∈R,且 + + =m,求證:a2+b2+c2≥36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 為實數(shù), , .記集合 , .若 , 分別為集合S,T的元素個數(shù),則下列結(jié)論不可能的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+3x2+9x+a(a為常數(shù)).
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(x)在區(qū)間[﹣2,2]上的最大值是20,求f(x)在該區(qū)間上的最小值.

查看答案和解析>>

同步練習(xí)冊答案