1.如圖是某個幾何體的三視圖,則這個幾何體體積是( 。
A.$2+\frac{π}{2}$B.$2+\frac{π}{3}$C.$4+\frac{π}{3}$D.$4+\frac{π}{2}$

分析 由三視圖可知:該幾何體由一個半圓柱與三棱柱組成的幾何體.

解答 解:由三視圖可知:該幾何體由一個半圓柱與三棱柱組成的幾何體.
這個幾何體體積V=$\frac{1}{2}×π×{1}^{2}×1$+$\frac{1}{2}$×($\sqrt{2}$)2×2=2+$\frac{π}{2}$.
故選:A.

點(diǎn)評 本題考查了圓柱與三棱柱的三視圖與體積計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosC=b-$\frac{{\sqrt{3}}}{2}$c.
(Ⅰ)求角A的大小;
(Ⅱ)若B=$\frac{π}{6}$,AC=4,求BC邊上的中線AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\frac{ax}{{x}^{2}+3}$,若f′(1)=$\frac{1}{2}$,則實(shí)數(shù)a的值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=-1+sinθ\end{array}\right.(θ$為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的圓心的極坐標(biāo)為( 。
A.$(1,-\frac{π}{2})$B.(1,π)C.(0,-1)D.$(1,\frac{π}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足a1=3,an+1=$\frac{{3{a_n}-1}}{{{a_n}+1}}$.
(1)證明:數(shù)列$\left\{{\frac{1}{{{a_n}-1}}}\right\}$是等差數(shù)列,并求{an}的通項公式;
(2)令bn=a1a2•…•an,求數(shù)列$\left\{{\frac{1}{b_n}}\right\}$的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x,y滿足$\left\{\begin{array}{l}y≥1\;\\ y≤x-1\;\\ x+y≤m\;\end{array}\right.$且z=x2+y2的最大值為10,則m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知復(fù)數(shù)z=(1-i)(i-2),則|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某單位員工按年齡分為A,B,C三組,其人數(shù)之比為5:4:1,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為10的樣本,已知C組中某個員工被抽到的概率是$\frac{1}{9}$,則該單位員工總數(shù)為( 。
A.110B.10C.90D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}是等比數(shù)列,a1=$\frac{\sqrt{2}}{2}$,a4=2,則a1+a2+…+a10等于( 。
A.$\frac{31\sqrt{2}}{2}$+31B.31$\sqrt{2}$+31C.80D.$\frac{5\sqrt{2}}{2}$+80

查看答案和解析>>

同步練習(xí)冊答案