y=
3x+1
x+2
的漸近線方程為
 
考點(diǎn):函數(shù)的圖象與圖象變化
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題可先將函數(shù)解析式進(jìn)行變形,然后根據(jù)解析式有意義的條件,求出函數(shù)圖象的漸近線.
解答: 解:∵y=
3x+1
x+2
=3+
-5
x+2
,
∴x+2≠0,x≠-2.
-5
x+2
≠0

∴y≠3.
∴原函數(shù)的漸近線方程為x=-2和y=3.
故答案為:x=-2和y=3.
點(diǎn)評(píng):本題考查的是函數(shù)的圖象和性質(zhì),利用函數(shù)解析式的特征求函數(shù)的漸近線方程.本題的解題難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=
3
2
an-n.
(Ⅰ)求證:數(shù)列{an+1}是等比數(shù)列;
(Ⅱ)令bn=log3(a1+1)+log3(a2+1)+…+log3(an+1),則對(duì)任意n∈N*,是否存在正整數(shù)m,使
1
b1
+
1
b2
+…+
1
bn
m
4
都成立?若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a•ex
x
(a∈R,a≠0).
(Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(1,f(1))處切線的方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈(0,+∞)時(shí),若f(x)≥1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)(x,y)位于曲線y=|x-2|與y=1所圍成的封閉區(qū)域內(nèi),則2x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(4x2+
1
x2
-4)3的二項(xiàng)展開式中x2項(xiàng)的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y為正實(shí)數(shù),下列命題:
①若x2-y2=1,則x-y<1;
②若
1
y
-
1
x
=1,則x-y<1;
③若
x
-
y
=1,則x-y<1.
其中的真命題有
 
.(寫出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,兩圓相交于點(diǎn)B、B1,直線PB與PB1分別于兩圓交于點(diǎn)A,C和A1,C1,PA=AB=BC=
3
,A1B1=1,則B1C1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)組合幾何體的三視圖,則該幾何體的體積是( 。
A、
27
3
2
+64π
B、
27
3
2
+128π
C、12+64π
D、36+128π

查看答案和解析>>

同步練習(xí)冊(cè)答案