已知函數(shù)f(x)=
2x,x≥1
-x2+2x,x<1
,若f(2-a2)<f(a),則實數(shù)a的取值范圍是( 。
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)
考點:分段函數(shù)的應(yīng)用
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:分別考慮分段函數(shù)各段的單調(diào)性,注意分界點的情況,再判斷函數(shù)f(x)在R上遞增,f(2-a2)<f(a)?2-a2<a,解出即可.
解答: 解:函數(shù)f(x)=
2x,x≥1
-x2+2x,x<1

當(dāng)x≥1時,f(x)=2x,為遞增函數(shù),且f(1)=2,
當(dāng)x<1時,f(x)=-(x-1)2+1,為遞增函數(shù),當(dāng)x→1,f(x)→1,
故函數(shù)f(x)在R上是遞增函數(shù).
則f(2-a2)<f(a)?2-a2<a?a>1或a<-2.
故選D.
點評:本題考查分段函數(shù)及運(yùn)用,考查函數(shù)的單調(diào)性和應(yīng)用:解不等式,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-2m|,設(shè)-2<m<0,記f1(x)=f(x),fk+1(x)=f(fk(x))(k∈N*),則函數(shù)y=f2014(x)的零點個數(shù)為(  )
A、2B、3
C、2014D、2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若1<x<3,x2-5x+3+a=0
(1)方程有解時a的最大值為
 
;
(2)方程有兩個不同解時a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若奇函數(shù)f(x)在[2,5]上是增函數(shù),且最小值是3,則它在[-5,-2]上是( 。
A、增函數(shù)且最小值是-3
B、增函數(shù)且最大值是-3
C、減函數(shù)且最大值是-3
D、減函數(shù)且最小值是-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(Ⅰ)若花店一天購進(jìn)17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量14151617181920
頻數(shù)10201616151310
若花店一天購進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤X(單位:元)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列說法:
①不等于0的所有偶數(shù)可以組成一個集合;
②高一(1)班的所有高個子同學(xué)可以組成一個集合;
③{1,2,3,4}與{4,2,3,1}是不同的集合;
④實數(shù)中不是有理數(shù)的所有數(shù)能構(gòu)成一個集合.
其中正確的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(2x+
π
3
)是由f(x)=sin2x的圖象經(jīng)過怎樣的平移變換得到的( 。
A、向右平移
π
6
個單位
B、向左平移
π
6
個單位
C、向右平移
π
3
個單位
D、向左平移
π
3
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
x2+1
,x<0
0,x=0
x-
1
x
,x>0
,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=x2+2x.
(1)求f(0)的值;
(2)求此函數(shù)在R上的解析式.

查看答案和解析>>

同步練習(xí)冊答案