7.集合A={x|2014≤x≤2015},B={x|x<a},若A?B,則實(shí)數(shù)a的取值范圍是( 。
A.a>2014B.a>2015C.a≥2014D.a≥2015

分析 根據(jù)A是B的真子集,得出[2014,2015]?(-∞,a),從而求得實(shí)數(shù)a的取值范圍,注意等號的取舍.

解答 解:因?yàn)锳是B的真子集,且
A={x|2014≤x≤2015}=[2014,2015],
B={x|x<a}=(-∞,a),
即:[2014,2015]?(-∞,a),
所以,a>2015,(不能取“=”),
故答案為:B.

點(diǎn)評 本題主要考查了集合的包含關(guān)系的判斷及其應(yīng)用,即真子集的判斷和參數(shù)范圍的確定,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線l:$\sqrt{3}$x+y+3=0的斜率為$-\sqrt{3}$,傾斜角α為$\frac{2}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合A={x|x2-3x+n=0},且1∈A.
(1)求集合A;
(2)如果集合B={x|mx+1=0},且B⊆A,求m的值組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)關(guān)于x的一元二次方程x2-ax+b2=0,
(1)將一顆質(zhì)地均勻的骰子先后拋擲兩次,第一次向上的點(diǎn)數(shù)記為a,第二次向上的點(diǎn)數(shù)記為b,求使得方程有實(shí)根的概率;
(2)若a、b是從[1,6]中任取的兩個(gè)數(shù),求方程無解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,線段AB長度為2,點(diǎn)A,B分別在x軸的正半軸和y軸的正半軸上滑動(dòng),以線段AB為一邊,在第一象限內(nèi)作等邊三角形,O為坐標(biāo)原點(diǎn),則$\overrightarrow{OC}$•$\overrightarrow{OB}$的取值范圍是[0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求值:
(1)${27^{\frac{2}{3}}}+{16^{-\frac{1}{2}}}-(\frac{1}{2}{)^{-2}}-(-\frac{8}{27}{)^{-\frac{2}{3}}}$
(2)$\frac{1}{2}lg\frac{32}{49}-\frac{4}{3}lg\sqrt{8}+lg\sqrt{245}+{2^{1+{{log}_2}3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.角α 終邊經(jīng)過點(diǎn)(-sin20°,cos20°),則角α的最小正角是( 。
A.110°?B.160°?C.290°?D.340°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)$f(x)=\frac{x^2}{{1+{x^2}}}$,那么$f(x)+f({\frac{1}{x}})$=1,f(1)+f(2)+f(3)+…+f(2015)+$f({\frac{1}{2}})+f({\frac{1}{3}})+…+f({\frac{1}{2015}})$=$\frac{4029}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線mx+y+m-1=0上存在點(diǎn)(x,y)滿足$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x>1}\end{array}\right.$,則實(shí)數(shù)m的取值范圍為$({-\frac{1}{2},1})$.

查看答案和解析>>

同步練習(xí)冊答案