6.為了解高中生上學(xué)使用手機(jī)情況,調(diào)查者進(jìn)行了如下的隨機(jī)調(diào)查:調(diào)查者向被調(diào)查者提出兩個問題:(1)你的學(xué)號是奇數(shù)嗎?(2)你上學(xué)時是否經(jīng)常帶手機(jī)?要求被調(diào)查者背對著調(diào)查人員拋擲一枚硬幣,如果出現(xiàn)正面,就回答第一問題,否則就回答第二個問題.被調(diào)查者不必告訴調(diào)查人員自己回答的是哪一個問題,只需回答“是”或“不是”,因為只有被調(diào)查者本人知道回答了哪一個問題,所以都如實地做了回答.結(jié)果被調(diào)查的800人(學(xué)號從1至800)中有260人回答了“是”.由此可以估計這800人中經(jīng)常帶手機(jī)上學(xué)的人數(shù)是120.

分析 推導(dǎo)出回答第一個問題的人數(shù)有400人,其中有200人的學(xué)號是奇數(shù),回答第二個問題的人數(shù)為400人,其中60人回答了“是”,由此可以估計這800人中經(jīng)常帶手機(jī)上學(xué)的人數(shù).

解答 解:結(jié)果被調(diào)查的800人(學(xué)號從1至800)中有400人的學(xué)號是奇數(shù),
400拋擲一枚硬幣,出現(xiàn)正面的概率是$\frac{1}{2}$,
∴回答第一個問題的人數(shù)有400人,其中有200人的學(xué)號是奇數(shù),
∴這200人都回答了“是”,
回答第二個問題的人數(shù)為400人,其中人回答了是,
由此可以估計這800人中經(jīng)常帶手機(jī)上學(xué)的人數(shù)是:
n=800×$\frac{60}{400}$=120.
故答案為:120.

點評 本題考查頻數(shù)的求法,考查古典概型的應(yīng)用,考查學(xué)生分析解決問題的能力,考查函數(shù)的性質(zhì)及應(yīng)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在極坐標(biāo)系中,過點A(1,π)且垂直于極軸的直線的極坐標(biāo)方程為( 。
A.ρ=sinθB.ρ=1C.ρcosθ=-1D.ρsinθ=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1在左支上一點M到右焦點F1的距離為16,N是線段MF1的中點,O為坐標(biāo)原點,則|ON|等( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)y=f(x)在區(qū)間(-2,2)上的圖象是連續(xù)不斷的曲線,且方程f(x)=0在(-2,2)上僅有一個實數(shù)根,則f(-1)•f(1)的值( 。
A.無法判斷B.小于0C.大于0D.等于零

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)隨機(jī)變量X~N(1,4),若P(X≥a+b)=P(X|X≤a-b),則實數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知A,B,C三人中,一個是油漆工,一個是木工,一個是泥瓦工,但不知A,B,C三人具體誰是什么工種,三人合作一件工程,由于其中的某一個人而做糟了,為了弄清楚責(zé)任,分別詢問三人,得到的回答如下:
A說:“C做壞了,B做好了”;B說:“我做壞了,C做好了”;
C說:“我做壞了,A做好了”.
現(xiàn)在又了解到,油漆工從來不說假話,泥瓦工從來不說真話,而木工說的話總是時真時假,則該負(fù)責(zé)任的是C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=2sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$的兩條相鄰對稱軸間的距離為$\frac{π}{2}$,把f(x)的圖象向右平移$\frac{π}{6}$個單位得到函數(shù)g(x)的圖象,且g(x)為偶函數(shù),則f(x)的單調(diào)遞增區(qū)間為( 。
A.$[{2kπ+\frac{π}{3},2kπ+\frac{4π}{3}}],k∈z$B.$[{kπ+\frac{π}{3},kπ+\frac{4π}{3}}],k∈z$
C.$[{2kπ-\frac{π}{6},2kπ+\frac{π}{3}}],k∈z$D.$[{kπ-\frac{π}{6},kπ+\frac{π}{3}}],k∈z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$),A($\frac{1}{3}$,0)為f(x)圖象的對稱中心,若該圖象上相鄰兩條對稱軸間的距離為2,則f(x)的單調(diào)遞增區(qū)間是( 。
A.(2k-$\frac{2}{3}$,2k+$\frac{4}{3}$),k∈ZB.(2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$),k∈Z
C.(4k-$\frac{2}{3}$,4k+$\frac{4}{3}$),k∈ZD.(4kπ-$\frac{2π}{3}$,4kπ+$\frac{4π}{3}$),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點P($\frac{\sqrt{3}}{2}$,$\sqrt{3}$),且離心率e=$\frac{1}{2}$.
(1)求橢圓C的方程.
(2)若F1、F2為橢圓的兩個焦點,A、B為橢圓的兩點,且$\overrightarrow{A{F}_{1}}$=$\frac{1}{2}$$\overrightarrow{B{F}_{2}}$,求直線AF1的斜率.

查看答案和解析>>

同步練習(xí)冊答案