【題目】已知某種植物每日平均增長高度(單位:)與每日光照時間(單位:)之間的關(guān)系有如下一組數(shù)據(jù):

(單位:

6

7

8

9

10

(單位:

3.5

5.2

7

8.6

10.7

(1)求關(guān)于的回歸直線方程;

(2)計算相關(guān)指數(shù)的值,并說明回歸模型擬合程度的好壞;

(3)若某天光照時間為8.5小時, 預(yù)測該天這種植物的平均增長高度(結(jié)果精確到0.1)

參考公式及數(shù)據(jù):,, ,,

【答案】(1) .(2) ,所以回歸模型的擬合效果很好.(3) .

【解析】

1)根據(jù)表格中提供的數(shù)據(jù)和參考公式,分別計算出 代入回歸直線方程即可;

2 代入計算即可求得 ,根據(jù)其是否接近于1,即可判斷擬合效果好的好壞;

3)把 代入回歸直線方程即可求得該天這種植物平均增長高度的估計值。

(1)

,所以關(guān)于的回歸直線方程為.

(2),所以回歸模型的擬合效果很好.

(3)把代入回歸直線方程得

所以該天這種植物平均增長高度估計為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】母線長為,底面半徑為的圓錐內(nèi)有一球,與圓錐的側(cè)面、底面都相切,現(xiàn)放入一些小球,小球與圓錐底面、側(cè)面、球都相切,這樣的小球最多可放入__________個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,過對角線的一個平面交于點,交.

①四邊形一定是平行四邊形;

②四邊形有可能是正方形;

③四邊形在底面內(nèi)的投影一定是正方形;

④四邊形有可能垂直于平面

以上結(jié)論正確的為_______________.(寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由四個不同的數(shù)字1,2,4,組成無重復(fù)數(shù)字的三位數(shù).(最后的結(jié)果用數(shù)字表達)

(Ⅰ)若,其中能被5整除的共有多少個?

(Ⅱ)若,其中能被3整除的共有多少個?

(Ⅲ)若,其中的偶數(shù)共有多少個?

(Ⅳ)若所有這些三位數(shù)的各位數(shù)字之和是252,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京聯(lián)合張家口獲得2022年第24屆冬奧會舉辦權(quán),我國各地掀起了發(fā)展冰雪運動的熱潮,現(xiàn)對某高中的學(xué)生對于冰雪運動是否感興趣進行調(diào)查,該高中男生人數(shù)是女生的1.2倍,按照分層抽樣的方法,從中抽取110人,調(diào)查高中生是否對冰雪運動感興趣得到如下列聯(lián)表:

感興趣

不感興趣

合計

男生

40

女生

30

合計

110

1)補充完成上述列聯(lián)表;

2)是否有99%的把握認為是否喜愛冰雪運動與性別有關(guān).

附: (其中.

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20151210日,我國科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻獲得諾貝爾醫(yī)學(xué)獎,以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長勢與海撥高度、土壤酸堿度、空氣濕度的指標(biāo)有極強的相關(guān)性,現(xiàn)將這三項的指標(biāo)分別記為,并對它們進行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)的值評定人工種植的青蒿的長勢等級,若,則長勢為一級;若,則長勢為二極;若,則長勢為三級,為了了解目前人工種植的青蒿的長勢情況,研究人員隨機抽取了10塊青蒿人工種植地,得到如下結(jié)果:

種植地編號












種植地編號












1)若該地有青蒿人工種植地180個,試估計該地中長勢等級為三級的個數(shù);

2)從長勢等級為一級的青蒿人工種植地中隨機抽取兩個,求這兩個人工種植地的綜合指標(biāo)均為4個概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若的圖像在處的切線與直線垂直,求實數(shù)的值及切線方程;

(Ⅱ)若過點存在3條直線與曲線相切,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一半徑為米的水輪如圖所示,水輪圓心距離水面米;已知水輪按逆時針做勻速轉(zhuǎn)動,每秒轉(zhuǎn)一圈,如果當(dāng)水輪上點從水中浮現(xiàn)時(圖中點)開始計算時間.

1)以水輪所在平面與水面的交線為軸,以過點且與水面垂直的直線為軸,建立如圖所示的直角坐標(biāo)系,試將點距離水面的高度(單位:米)表示為時間(單位:秒)的函數(shù);

2)在水輪轉(zhuǎn)動的任意一圈內(nèi),有多長時間點距水面的高度超過米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像相鄰對稱軸之間的距離是,若將的圖像向右移個單位,所得函數(shù)為奇函數(shù).

(1)求的解析式;

(2)若函數(shù)的零點為,

(3)若對任意,有解,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案