已知A、B、C、D四點(diǎn)不共面,則與這四點(diǎn)距離相等的平面共有
 
個(gè).
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專題:計(jì)算題,空間位置關(guān)系與距離
分析:四個(gè)點(diǎn)在平面同側(cè)不可能存在與空間不共面四點(diǎn)距離相等的平面,那么可分為一個(gè)點(diǎn)在平面一側(cè),另三個(gè)點(diǎn)在另一側(cè),中截面滿足條件,這樣的情形有4個(gè),還有一類是二個(gè)點(diǎn)在平面一側(cè),另兩個(gè)點(diǎn)在另一側(cè),這樣滿足條件的平面有三個(gè),即可求出所有滿足條件的平面.
解答: 解:一個(gè)點(diǎn)在平面一側(cè),另三個(gè)點(diǎn)在另一側(cè),這樣滿足條件的平面有四個(gè),都是中截面
如圖:

二個(gè)點(diǎn)在平面一側(cè),另兩個(gè)點(diǎn)在另一側(cè),這樣滿足條件的平面有三個(gè)
如圖:

故到這四點(diǎn)距離相等的平面有7個(gè)
故答案為:7.
點(diǎn)評(píng):本小題主要考查平面的基本性質(zhì)及推論、確定平面的條件、空間距離等基礎(chǔ)知識(shí),考查空間想象力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{cn}的前n項(xiàng)和Sn滿足:S1=5,Sn+1=2Sn+3n,又設(shè)an=Sn-3n,bn=1+2log2an(n∈N*
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)若Tn=b1a1+b2a2+…+bnan,且Tn≥m恒成立,求Tn和常數(shù)m的范圍;
(Ⅲ)證明:對(duì)任意的n∈N*,不等式
b1
b1-1
b2
b2-1
•…•
bn
bn-1
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
mex-2x-x2lnx
x2
(其中e為自然對(duì)數(shù)的底)在區(qū)間(0,2)上有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,記實(shí)數(shù)m的取值范圍為區(qū)間I.
(Ⅰ)求區(qū)間I;
(Ⅱ)記g(m)=x1+x2,證明:函數(shù)y=g(m)在區(qū)間I上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的公差d≠0,又a1,a2,a4成等比數(shù)列,公比為q,則q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

α,β是方程x2+ax+2b=0的兩根,且α∈[0,1],β∈[1,2],a,b∈R,則
b-3
a-1
的最大值和最小值分別是
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-
1
2
x+
1
4
,x∈[0,
1
2
]
2x2
x+2
,x∈(
1
2
,1]
g(x)=asin(
π
3
x+
2
)-2a+2(a>0),給出下列結(jié)論:
結(jié)論:
①函數(shù)f(x)的值域?yàn)閇0,
2
3
];
②函數(shù)g(x)在[0,1]上是增函數(shù);
③對(duì)任意a>0,方程f(x)=g(x)在[0,1]內(nèi)恒有解;
④若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是[
4
9
,
4
5
].
其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩陣M=
1x
21
的一個(gè)特征值為-1,求其另一個(gè)特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=
e
e-1
1
x
dx,則二項(xiàng)式(ax-
1
x
8的展開(kāi)式中x2項(xiàng)的系數(shù)是( 。
A、-1120B、1120
C、-1792D、1792

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:函數(shù)f(x)=x3-3x在區(qū)間(-1,1)內(nèi)單調(diào)遞減,命題q:函數(shù)f(x)=|sin2x|的最小正周期為π,則下列命題為真命題的是( 。
A、p∧q
B、(¬p)∨q
C、p∨q
D、(¬p)∧(¬q)

查看答案和解析>>

同步練習(xí)冊(cè)答案