已知直線l:kx-y+1+2k=0,求原點O到直線l距離的最大值.
考點:恒過定點的直線,點到直線的距離公式
專題:轉(zhuǎn)化思想,直線與圓
分析:寫出原點的坐標(biāo),由題意可知原點到已知直線的距離的最大值即為原點到直線恒過的定點間的距離,所以利用兩點間的距離公式求出原點到定點間的距離即為距離的最大值.
解答: 解:直線l:kx-y+1+2k=0,恒過定點(-2,1),
原點(0,0)到直線距離的最大值,即為原點(0,0)到點(-2,1)的距離d.
d=
(-2)2+12
=
5

原點O到直線l距離的最大值:
5
點評:此題考查學(xué)生會根據(jù)兩直線的方程求出兩直線的交點坐標(biāo),靈活運用兩點間的距離公式化簡求值,是一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某超市貨架上擺放著某品牌紅燒牛肉方便面,如圖是它們的三視圖,則貨架上的紅燒牛肉方便面至少有(  )
A、8桶B、9桶
C、10桶D、11桶

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊過點A(-2,4),求下列各式的值.
(1)2sin2α-sinαcosα-cos2α;
(2)tan2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求圓心在直線2x-y-3=0上,且過點A(5,2)和點B(3,2)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的㈱對邊分別為a,b,c,且滿足2acosC=2b+c.
(1)求角A;
(2)若sinBsinC=
1
4
,且b=4,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點在平面直角坐標(biāo)系的原點O處,極軸與x軸的非負半軸重合,且長度單位相同,若圓C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為
x=3+t
y=4+2t
(t為參數(shù)),直線l與圓C交于A,B兩點.
(1)求圓C的直角坐標(biāo)方程與直線l的普通方程;
(2)求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=log
1
2
3-2x-x2
的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(x+a).
(1)若0<f(1-2x)-f(x)<
1
2
,當(dāng)a=1時,求x的取值范圍;
(2)若定義在R上奇函數(shù)g(x)滿足g(x+2)=-g(x),且當(dāng)0≤x≤1時,g(x)=f(x),求g(x)在[-3,-1]上的反函數(shù)h(x);
(3)對于(2)中的g(x),若關(guān)于x的不等式g(
t-2 x
8+2 x+3
)≥1-log23在R上恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的中心在坐標(biāo)原點、對稱軸為坐標(biāo)軸,且拋物線x2=-4
2
y的焦點是它的一個焦點,又點A(1,
2
)在該橢圓上.
(1)求橢圓E的方程;
(2)若斜率為
2
直線l與橢圓E交于不同的兩點B、C,當(dāng)△ABC的面積為
2
時,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案