【題目】已知函數f(x)=|2x﹣a|+2;
(1)若不等式f(x)<6的解集為(﹣1,3),求a的值;
(2)在(1)的條件下,對任意的x∈R,都有f(x)>t﹣f(﹣x),求t的取值范圍.
【答案】
(1)解:f(x)<6,即|2x﹣a|<4,
∵不等式f(x)<6的解集為(﹣1,3),
∴ ,
∴a=2
(2)解:∵f(x)>t﹣f(﹣x),
∴t<f(x)+f(﹣x),
∴t<|2x﹣2|+|﹣2x﹣2|+4,
∵|2x﹣2|+|﹣2x﹣2|+4≥4+4=8,
∴t<8
【解析】(1)f(x)<6,即|2x﹣a|<4,根據不等式f(x)<6的解集為(﹣1,3),建立方程,即可求出a的值;(2)由f(x)>t﹣f(﹣x),可得t<|2x﹣2|+|﹣2x﹣2|+4,求出右邊的最小值,即可得出結論.
【考點精析】解答此題的關鍵在于理解絕對值不等式的解法的相關知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號.
科目:高中數學 來源: 題型:
【題目】設向量 =(λ+2,λ2﹣
cos2α),
=(m,
+sinαcosα),其中λ,m,α為實數.
(1)若α= ,求|
|的最小值;
(2)若 =2
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市疾控中心流感監(jiān)測結果顯示,自年
月起,該市流感活動一度出現上升趨勢,尤其是
月以來,呈現快速增長態(tài)勢,截止目前流感病毒活動度仍處于較高水平,為了預防感冒快速擴散,某校醫(yī)務室采取積極方式,對感染者進行短暫隔離直到康復.假設某班級已知
位同學中有
位同學被感染,需要通過化驗血液來確定感染的同學,血液化驗結果呈陽性即為感染,呈陰性即未被感染.下面是兩種化驗方法: 方案甲:逐個化驗,直到能確定感染同學為止;
方案乙:先任取個同學,將它們的血液混在一起化驗,若結果呈陽性則表明感染同學為這
位中的
位,后再逐個化驗,直到能確定感染同學為止;若結果呈陰性則在另外
位同學中逐個檢測;
(1)求依方案甲所需化驗次數等于方案乙所需化驗次數的概率;
(2)表示依方案甲所需化驗次數,
表示依方案乙所需化驗次數,假設每次化驗的費用都相同,請從經濟角度考慮那種化驗方案最佳.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知公差不為0的等差數列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數列.
(1)求數列{an}通項公式;
(2)設數列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1=
的正整數n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= 其中P,M是非空數集,且P∩M=,設f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(I)若P=(﹣∞,0),M=[0,4],求f(P)∪f(M);
(II)是否存在實數a>﹣3,使得P∪M=[﹣3,a],且f(P)∪f(M)=[﹣3,2a﹣3]?若存在,請求出滿足條件的實數a;若不存在,請說明理由;
(III)若P∪M=R,且0∈M,I∈P,f(x)是單調遞增函數,求集合P,M.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax+bx﹣cx , 其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長,則下列結論中正確的是( )
①對一切x∈(﹣∞,1)都有f(x)>0;
②存在x∈R+ , 使ax , bx , cx不能構成一個三角形的三條邊長;
③若△ABC為鈍角三角形,則存在x∈(1,2),使f(x)=0.
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從1至9這9個自然數中任取兩個:
恰有一個偶數和恰有一個奇數;
至少有一個是奇數和兩個數都是奇數;
至多有一個奇數和兩個數都是奇數;
至少有一個奇數和至少有一個偶數.
在上述事件中,是對立事件的是
A. B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com