函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時(shí),(x-1)f′(x)<0,設(shè)af(0),bf,cf(3),則(  )

A.a<b<c                                            B.c<b<a

C.c<a<b                                            D.b<c<a


C 依題意得,當(dāng)x<1時(shí),f′(x)>0,f(x)為增函數(shù);又f(3)=f(-1),且-1<0<<1,因此有f(-1)<f(0)<f,

即有f(3)<f(0)<f,c<a<b.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


關(guān)于x的二次方程(m+3)x2-4mx+2m-1=0的兩根異號(hào),且負(fù)根的絕對(duì)值比正根大,那么實(shí)數(shù)m的取值范圍是(  )

A.-3<m<0                        B.0<m<3

C.m<-3或m>0                    D.m<0或m>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


關(guān)于x的二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知f(x)與g(x)是定義在R上的兩個(gè)可導(dǎo)函數(shù),若f(x),g(x)滿足f′(x)=g′(x),則f(x)與g(x)滿足(  )

A.f(x)=g(x)                                      B.f(x)=g(x)=0

C.f(x)-g(x)為常數(shù)函數(shù)                     D.f(x)+g(x)為常數(shù)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知函數(shù)f(x)=x,g(x)=a(2-ln x)(a>0).若曲線yf(x)與曲線yg(x)在x=1處的切線斜率相同,求a的值,并判斷兩條切線是否為同一條直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知函數(shù)f(x)=x3ax2-3x.

(1)若f(x)在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;

(2)若x=3是f(x)的極值點(diǎn),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)是f′(x),且函數(shù)f(x)在x=-2處取得極小值,則函數(shù)yxf′(x)的圖像可能是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知函數(shù)f(x)=·exf(0)·xx2(e是自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)f(x)的解析式和單調(diào)區(qū)間;

(2)若函數(shù)g(x)=x2a與函數(shù)f(x)的圖像在區(qū)間[-1,2]上恰有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


.函數(shù)f(x)=Asin(ωxφ)(A,ω,φ為常數(shù),A>0,ω>0)的部分圖像如圖所示,則f(0)的值是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案