畫出y=-2-x的圖象.
考點:函數(shù)圖象的作法
專題:函數(shù)的性質及應用
分析:根據(jù)指數(shù)函數(shù)的圖象和性質即可到y(tǒng)=-2-x的圖象.
解答: 解:先畫出y=2-x=(
1
2
)x
的圖象,再沿x軸對折,即可得到y(tǒng)=-2-x的圖象,圖象如圖所示.
點評:本題考查了指數(shù)函數(shù)的圖象和性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x2+2ex+m-1,g(x)=x+
e2
x
 (x>0).
(1)若y=g(x)-m有零點,求m的取值范圍;
(2)確定m的取值范圍,使得g(x)-f(x)=0有兩個相異實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an},{bn}滿足a1=
1
2
,2nan+1=(n+1)•an,且bn=ln(1+an)+
1
2
a2n,n∈N*
(1)求a2,a3,a4,并求數(shù)列{an}的通項公式
(2)對一切的n∈N*,求證:
2
an+2
an
bn
成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m∈R,函數(shù)f(x)=x2-mx+m.
(1)若存在x使得f(x)<0,求m的取值范圍;
(2)若實x1,x2數(shù)滿足x1<x2,且f(x1)≠f(x2),證明:方程f(x)=
1
2
[f(x1)+f(x2)]至少有一個實根x0∈(x1,x2);
(3)設F(x)=f(x)+1-m-m2,且|F(x)|在[0,1]上單調遞增,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0)與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)有相同的焦點F,P是兩曲線的公共點,且|PF|=
5
6
p,則此雙曲線的離心率為( 。
A、
3
B、
2
+1
C、3
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosx=
1-m
2m+3
有根,則m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)滿足:在定義域D內存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)為“1的飽和函數(shù)”.給出下列四個函數(shù):①f(x)=
1
x
;②f(x)=2x;、踗(x)=lg(x2+2);④f(x)=cosπx,其中是1的飽和函數(shù)的所有函數(shù)的序號為 ( 。
A、②④B、①②④C、③④D、②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空間四邊形OABC中,G,H分別是△ABC,△OBC的重心,設
OA
=
a
OB
=
b
,
OC
=
c
,試用向量
a
,
b
c
表示向量
OG
GH

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若有
a+b
2b
=cos2
c
2
,則△ABC是
 
三角形.

查看答案和解析>>

同步練習冊答案