9.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且Sn+an=1(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(-1)n•($\frac{1}{a^n}$-1),求數(shù)列{bn}前n項(xiàng)和Tn

分析 (1)根據(jù)數(shù)列遞推式,再寫一式,兩式相減,可得數(shù)列{an}是以$\frac{1}{2}$為首項(xiàng),$\frac{1}{2}$為公比的等比數(shù)列,從而可求數(shù)列的通項(xiàng),
(2)先求出bn,再分n為偶數(shù)和你為奇數(shù)兩類計(jì)算即可.

解答 解:(1)∵an+Sn=1,∴n≥2時(shí),an-1+Sn-1=1
兩式相減可得:2an=an-1,∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{2}$(n≥2)
∵n=1時(shí),a1+S1=1,∴a1=$\frac{1}{2}$
∴數(shù)列{an}是以$\frac{1}{2}$為首項(xiàng),$\frac{1}{2}$為公比的等比數(shù)列,
∴an=$\frac{1}{{2}^{n}}$;
(2)bn=(-1)n•($\frac{1}{a^n}$-1)=(-1)n•(2n-1),
∴Tn=(-1)1•(21-1)+(-1)2•(22-1)+(-1)3•(23-1)+(-1)4•(24-1)+…+(-1)n•(2n-1),
當(dāng)n=偶數(shù)時(shí),
∴Tn=-(21-1+23-1+25-1+…+2n-1-1)+(22-1+24-1+…+2n-1)=-$\frac{2(1-{2}^{n})}{1-4}$+$\frac{n}{2}$+$\frac{4(1-{2}^{n})}{1-4}$-$\frac{n}{2}$=$\frac{2}{3}$(2n-1),
當(dāng)n為奇數(shù)時(shí),Tn=-(21-1+23-1+25-1+…+2n-1)+(22-1+24-1+…+2n-1)=-$\frac{2(1-{2}^{n+1})}{1-4}$+$\frac{n+1}{2}$+$\frac{4(1-{2}^{n-1})}{1-4}$-$\frac{n-1}{2}$=-$\frac{{2}^{n+1}}{3}$+$\frac{1}{3}$,
∴Tn=$\left\{\begin{array}{l}{\frac{{2}^{n+1}}{3}-\frac{2}{3},n為偶數(shù)}\\{\frac{{2}^{n+1}}{3}+\frac{1}{3},n為奇數(shù)}\end{array}\right.$

點(diǎn)評(píng) 本題考查了數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,AB=2,AD=3,PA=$\sqrt{3}$,點(diǎn)E為棱CD上一點(diǎn),則三棱錐E-PAB的體積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.某校在暑假組織社會(huì)實(shí)踐活動(dòng),將8名高一年級(jí)學(xué)生,平均分配甲、乙兩家公司,其中兩名英語(yǔ)成績(jī)優(yōu)秀學(xué)生不能分給同一個(gè)公司;另三名電腦特長(zhǎng)學(xué)生也不能分給同一個(gè)公司,則不同的分配方案有36.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.命題p:“|a|+|b|≤1”;命題q:“對(duì)任意的x∈R,不等式asinx+bcosx≤1恒成立”,則p是q的充分不必要條件(從“充分不必要、必要不充分、充分必要、既不充分也不必要”中選一個(gè)合適的填上去).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.集合A={1,2,3,4},B={3,4,5,6},則圖中陰影部分表示的集合為( 。
A.B.{1,2}C.{3,4}D.{5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù) f(x)=a(|sinx|+|cosx|)-sin2x-1,a∈R.
(1)寫出函數(shù) f(x)的最小正周期(不必寫出過程);
(2)求函數(shù) f(x)的最大值;
(3)當(dāng)a=1時(shí),若函數(shù) f(x)在區(qū)間(0,kπ)(k∈N*)上恰有2015個(gè)零點(diǎn),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.高一某班有位學(xué)生第1次月考數(shù)學(xué)考了69分,他計(jì)劃以后每次考試比上一次提高5分(如第2次計(jì)劃達(dá)到74分),則按照他的計(jì)劃該生數(shù)學(xué)以后要達(dá)到優(yōu)秀(120分以上,包括120分)至少還要經(jīng)過的數(shù)學(xué)月考的次數(shù)為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知等差數(shù)列{an}滿足a1+a14=a7+4,則lgS15=( 。
A.l+lg6B.6C.1+lg3D.lg6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.以下四個(gè)命題中:
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;
②若數(shù)據(jù)x1,x2,x3,…xn的方差為1,則2x1,2x2,2x3,…,2xn的方差為2;
③兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近于1;
④對(duì)分類變量x與y的隨機(jī)變量K2的觀測(cè)值k來(lái)說,k越小,判斷“x與y有關(guān)”的把握越大.
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案